Real-Time Scheduling of
Tertiary Storage

Maria Eva M. Lijding

4‘ University of Twente

J P.O. Box 217 - 7500 AE Enschede - The Netherlands
telephone +31-53-4893690 / fax +31-53-4892927

Composition of the Graduation Committee:

Prof. Dr. S.J. Mullender, University of Twente (promoter)
Dr. D.L. Pressotto, Lucent Technologies, USA

Prof. Dr. S. Luitjens, Philips Nat.Lab.

Prof. Dr. G.J. Woeginger, University of Twente

Ir. PG. Jansen, University of Twente

Prof. Dr. S.L. van de Velde, Erasmus University Rotterdam
Prof. Dr. C. Hoede, University of Twente (chairman)

NWO

=
w
[y
‘_

[&

The research reported in this thesis was partly financed by the
NWO (the Netherlands Organization for Scientific Research)
through the Advanced Multimedia Indexing and Searching
project (AMIS), under grant 612-21-201.

IPA Dissertations Series No. 2003-07

Thework in thisthesis has been carried out under the auspices
of the research school |PA (Institute for Programming research
and Algorithmics).

CTIT Ph.D.—thesis Series No. 03-48
Centre for Telematics and Information Technology (CTIT)
P.O. Box 271, 7500 AE Enschede, The Netherlands

This thesis was typeset with IATEX in Times and Courier. Figures are drawn with
PowerPoint and exported to EPS and PDF. Powerpoint is a registered trademark
of Microsoft. EPS and PDF are registered trademarks of Adobe. The cover was
designed by Hartmut Benz.

Copyright () 2003 Maria Eva M. Lijding, Enschede, The Netherlands.
Printed by Ipskamp PrintPartners, Enschede, The Netherlands.

ISBN 90-365-1890-3

ISSN 1381-3617 (CTIT Ph.D-thesis Series No. 03-48)

REAL-TIME SCHEDULING OF
TERTIARY STORAGE

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,
on the authority of the rector magnificus,
prof.dr. F.A. van Vught,
on account of the decision of the graduation committee,
to be publicly defended
on Thursday, May 1, 2003 at 16:45

by
Maria Eva Magdalena Lijding

born on May 14, 1970
in Buenos Aires, Argentina

This dissertation is approved by the promoter Prof. Dr. S.J. Mullender.

Acknowledgements

Although my experience with my own Dutch family had shown since early in life
that not al Dutch people fit the image that is created about them in some other
latitudes of the world—of being cold and dull as their weather—I still feared my
family could be an exception, resulting from having stayed in warmer places than
the Netherlands for extended periods of time. Luckily, my fears were wrong. It is
hard to imagine people that enjoy life so much and are willing to joke and laugh
about nearly everything as Dutch people do. My colleagues at the University of
Twente received me in awarm and friendly fashion and showed incredible patience
with my initially feeble attempts to hold full conversations in Dutch. Furthermore,
the Dutch openness and readiness to discuss all type of topics enriched mewith very
Interesting conversations during coffee time and lunch. | thank all my colleaguesfor
their support, friendliness and their contribution to improve my Dutch.

| am very grateful to my promoter Sape Mullender, who trusted me to do a PhD
and gave methe freedom to decide the direction of the research. He hasasuperb way
of providing advice for researching and writing in the form of simple guidelinesthat
are easy tofollow. Most of all, I want to thank him for hisfriendliness and openness
since | first got in contact with him five years ago.

Pierre Jansen became my unofficial daily supervisor after some informal discus-
sions about our research interests. Since then he has been a great discussion partner.
He also proposed the periodic scheduler to compare against Promote-1T. Addition-
aly, I immensely enjoyed our conversations about history and world politics, inter-
ests that we both share.

The practical aspects should have been very hard to deal with without the help
and support of Ferdy Hanssen. With great patience he maintained my system, in-
stalled software, helped me with IATEX, and helped me fight some battles against a
misbehaving jukebox. Ferdy programmed thefirst version of the periodic scheduler.
He also greatly improved the Dutch version of the abstract. Moreover, he has been
agreat colleague, reliable and aways ready to lend a helping hand.

To my good fortune, Sandro Etalle found the scheduling problem of the jukebox
challenging and programmed the optimal scheduler, which | usein this thesisas a
benchmark for the heuristic schedulers. | thank Pieter Hartel for his advice on how

to present the formalization of the scheduling problem and the solution. He also
gave me useful comments regarding the presentations of the results of my research.

Gerhard Woeginger helped me feel at easein the world of scheduling theory and
become more confident in my own research. He also suggested me to look into the
vehicle routing problem.

Thijs Krol, Hans Scholten, and Albert Schoute were very good discussion part-
nersfor some details regarding the hardware model. Additionally, through the inter-
esting conversations during lunch they helped me understand better the Dutch cul-
ture. | thank Lodewijk Smit for our conversations on how to write athesis. Thanks
also to my former colleagues, Ties Bos and Peter Bosch.

| am profoundly grateful to Hartmut Benz for his contribution to this work, my
happiness, and well-being. Our discussions on software design, design patterns and
programming in Java helped me build and improve my software. He also performed
a careful proofreading of the dissertation that resulted in many important fixes and
helped me prepare the camera-ready version. Last, but not least | thank him for
being awonderful husband, listening to my ‘loud-thinking’, and comforting me and
supporting me when the workload and the task ahead seemed too heavy.

| thank Dave Presotto for helping me to improve the grammar of the dissertation.
He kindly offered to read the text again and point out ugly and incorrect sentences.
The reader will probably regret that due to real-time deadlines in the printing pro-
cess | could not profit more of his knowledge as native English speaker.

Many people encouraged meto pursue aPhD. | especially thank Claudio Righetti
and Irene Loiseau, who encouraged me early in 1993 to apply for a research grant
for students from the University of Buenos Aires, and since then have supported me
in my career. They also encouraged me to ask for the post-graduate grant from the
Fundacion Y PF that financed my first year in Europe. Thanks to Leandro Navarro
who invited meto work with himin the Polytechnic University of Catalonia. Hewas
not only a good mentor, but also a supportive friend. | thank as well the Fundacion
Y PF, especially Algandra Tomassini for her support and care.

Thanks aswell to all the people that made my life easy and pleasant in the north-
ern hemisphere. To my family in Alkmaar and England who gave me a warm wel-
cometo this part of the world. To Marianne Benz for her support, listening and care.
To Elisa Moreno, who gave me the great gift of her friendship. To the friends here,
in Germany and Barcelona, who made me feel at home very soon.

Finally, | thank my parents and my brother who constantly support me and en-
courage me from the distance. They know that even if along geographical distance
separates us now, they are always near in my heart. | especially appreciate that they
could understand that | had to follow my heart and pursue a PhD here. They have
shown abig capacity for sharing my happiness and sorrows from adistance. | thank
also the friends and family in South Americafor their support and encouragement.

Vi

Abstract

Today multimedia data is generally stored in secondary storage (hard disks) and is
from there delivered to the users. However, the amount of storage capacity needed
for a multimedia archive is large and constantly growing with the expectations of
the users. Tertiary-storage jukeboxes can provide the required storage capacity in
an attractive way if the data can be accessed with real-time guarantees.

A jukebox is a large tertiary storage device that can access data from a large
number of removable storage media (RSM, for example DVDs or tapes) using a
small number of drives and one or more robots to move RSM between their shelves
and the drives. A central problem with this setup is that the RSM switching times
are high, in the order of tens of seconds. Thus, multiplexing between files may be
many orders of magnitudes slower than on a hard drive, where it takes only a few
milliseconds. The second important problem isthe potential for resource-contention
that results from the shared resources in the jukebox.

Our hierarchical multimedia archive (HMA) is a service that provides flexible
real-time access to data stored in tertiary storage. The HMA can serve complex re-
quests for the real-time delivery of any combination of media files it stores. Such
reguests can for instance result from a database query to compile a historical back-
ground for news on-the-fly, or from a personalized entertainment program consi st-
ing of music video clips.

The HMA uses secondary storage as a buffer and cache for the datain itstertiary-
storage jukeboxes. The jukebox scheduler is the key component of the HMA that
guarantees the in-time promotion of datafrom tertiary storage to secondary storage.
Apart from providing real-time guarantees, the scheduler also tries to minimize the
number of rejected requests, minimize the response time for ASAP requests, mini-
mize the confirmation time, and optimize hardware utilization.

Thefirst step in order to build an efficient scheduler isto understand the schedul-
ing problem thoroughly. On the one hand, we model the hardware and identify the
parameters that define the hardware behaviour. Our model is flexible and can rep-
resent any present and expected future jukebox hardware. On the other hand, we
formalize the scheduling problem using scheduling theory so that its characteristics
and complexity can be analyzed, and the problem can be classified and compared

vii

with other scheduling problems. Given the complexity of the scheduling problem
we are dealing with, there are many different waysin which it can be modelled. We
present a hierarchy of models and analyze their advantages and disadvantages.

The most important of the scheduling-problem models is the minimum switching
model, which models the problem as a flexible flow shop with three stages—Ioad,
read, unload. The model requires that once an RSM is loaded in a drive, al the
requested data of the RSM is read before the RSM is unloaded. Thus, the schedules
that can be built with this model have a minimum number of switches, which in turn
results in good resource utilization.

Promote-IT is an efficient heuristic scheduler based on the minimum switching
model. It can deal with awide variety of requests and jukebox hardware. Promote-1T
provides short response and confirmation times, and makes good use of the jukebox
resources. It separates the scheduling and dispatching functionality and effectively
uses this separation to dispatch tasks earlier than scheduled, provided that the re-
source constraints are respected and no task misses its deadline. Promote-IT can
use different scheduling strategies that vary in the way schedules are built.

To prove the efficiency of Promote-IT we implemented aternative schedulers
based on different scheduling models and scheduling paradigms. The evaluation
shows that Promote-IT performs better than the other heuristic schedulers. Addi-
tionally, Promote-1T provides response-times near the optimum in cases where the
optimal scheduler can be computed. We developed a toolbox called JukeTools to
easily implement, evaluate and compare jukebox schedulers.

viii

Samenvatting

Tegenwoordig wordt multimedia data meestal in secondaire opslag (harde schij-
ven) bewaard en vandaar aan de gebruikers geleverd. Maar de opslagcapaciteit die
nodig is voor een multimedia archief is groot en groeit voortdurend mee met de
verwachtingen van de gebruikers. Jukeboxen voor tertiaire opslag kunnen op een
aantrekkelijke manier de benodigde capaciteit aanbieden, indien toegang tot de data
met real-time garanties mogelijk is.

Een jukebox is een systeem voor tertiaire opslag, dat toegang heeft tot data, opge-
slagen op een groot aantal uitwisselbare media (RSM, bijvoorbeeld DV Ds of tapes)
door middel van een klein aantal drives en een of meer robots die RSM tansporte-
ren van de bewaarposities naar de drives en vice versa. Een centraal probleem met
deze configuratieis dat de wisseltijd van de RSM hoog is, in de orde van tientallen
seconden. Dus, het wisselen tussen bestanden kan vele malen langzamer zijn dan
wisselen tussen bestanden op een harde schijf. Een tweede belangrijk probleem is
het potentieel voor resource-contention, veroorzaakt door het feit dat de jukebox-
componenten gemeenschappelijk zijn.

Ons hiérarchisch multimedia archief (HMA) is een service die flexibel real-time
toegang tot tertiaire opslag biedt. Het HMA kan complexe verzoeken voor de real -
time aflevering van elke willekeurige combinatie van in het archief opgeslagen data
honoreren. Een dergelijk verzoek kan bijvoorbeeld van een database-query komen
om historische informatie voor een nieuwsprogramma op dat moment samen te
stellen, of van een persoonlijk muziekprogramma, waar videoclips gecombineerd
kunnen worden.

Het HMA gebruikt secundaire opslag als buffer en cache voor zijn jukeboxen. De
jukebox scheduler is de belangrijkste component van het HMA, die garandeert dat
data op tijd van tertiaire naar secundaire opslag wordt gepromoveerd. De scheduler
geeft niet alleen real-time garanties, maar probeert ook zowel het aantal afgekeurde
verzoeken, as ook de respons- en de confirmatietijd te minimaliseren en de hard-
ware utilisatie te optimaliseren.

De eerste stap voor het bouwen van een efficiente scheduler is het doorgronden
van het probleem. Daartoe modelleren wij de hardware op een flexibele manier
zodat elk type huidige en toekomstige jukeboxen kan worden gerepresenterd. Ver-

der formaliseren wij het schedulingprobleem met schedulingtheorie om de eigen-
schappen en complexiteit te analyseren en om het probleem te classificeren en te
vergelijken met andere schedulingproblemen. Er zijn er meerdere manieren om het
probleem te modelleren. Wij presenteren een hiérarchie van modellen en analyseren
hun voor- en nadelen.

Het belangrijkste model is het minimum switching model. Het modelleert het pro-
bleem als een flexible flow shop met drie stages (laden, lezen, ontladen). Wanneer
een RSM in een drive wordt gel aden, wordt alle benodigde datavan de RSM gelezen
voordat de RSM wordt terug gegeven. Dus de op dit model gebaseerde roosters heb-
ben een minimum aantal wisselingen, zodat de hardware efficiéent wordt gebruikt.

Promote-IT is een efficiente, op heuristiek gebaseerde scheduler afgeleid van het
minimum switching model. Promote-IT kan elk type verzoek en jukeboxhardware
aan. Het biedt korte respons- en confirmatietijden aan de gebruiker en gebruikt ju-
keboxcomponenten efficient. Promote-1T verdeelt de verroostering- en dispatching-
functionaliteit en gebruikt deze verdeling op effectieve wijze om taken vroeger dan
gepland af te handelen, zolang de beperkingen op het componentengebruik worden
gerespecteerd en geen deadlines van taken worden overschreden. Promote-IT kan
verschillende strategieen gebruiken, die variéren op de manier waarop de taken in
het rooster zijn toegevoegd.

Om de efficientie van Promote-IT te tonen, hebben wij alternatieve schedulers
geimplementeerd, die op verschillende schedulingmodellen en paradigma’s zijn ge-
baseerd. De evaluatie laat zien dat Promote-IT beter presteert dan de andere, op
heuristiek gebaseerde schedulers en dat de responstijd dicht bij de optimale oplos-
sing ligt in de gevallen waar een dergelijke oplossing berekend kan worden. Wij
hebben een toolbox gebouwd, JukeTools genaamd, om gemakkelijk en snel juke-
boxschedul ers te kunnen implementeren, evalueren en vergelijken.

Contents

Abstract

Samenvatting

1

Introduction

1.1 Hierarchical Storage
1.2 Hierarchical MultimediaArchive
1.3 Jukebox Scheduling
14 Summary
1.5 Outlineof theDissertation

Background and Related Work
21 SchedulingTheory

211
212
213

AperiodicScheduling.
Periodic Scheduling
Problem Complexity

2.2 Scheduling of Tertiary Storage .« L

221
222
223
224
225

Schedulersfor Complex Requests
Schedulers for Simple Requests for Continuous Media . . .
Schedulers with Unsolved Contention Problems
Schedulersfor Requestsfor DiscreteData
Scheduling of aSingleMedium

2.3 Scheduling of Automated Storage/Retrieval Systems
2.4 Schedulingin LogisticsApplications
25 Summary ... e

Hierarchical Multimedia Archive

31 UsageScenarios. o v i e
32 UserRequest
3.3 SystemArchitecture.
34 CacheManager

11
11
12
15
16
17
17
20
22
24
27
30
31
32

35
35
36
38
41

Xi

3.5 Generic ScheduleBuilder 42

3.6 Storing New DatainaJdukebox 44
37 SUMMAY . . . o e e e 44

4 Tertiary-Storage Hardware 45
4.1 Jukebox Technology 45
4.1.1 Optical and Magneto-optical Disks 49

412 MagneticTapes o v v v i i e 54

42 HardwareModel 55
421 DiskModd 57

422 DriveModd L 58

4.2.3 Jukebox and RobotModel 64

424 Moded Validation 72

4.3 Jukebox Controller 80
44 SUMMAY . . . o e e e e e e e e e 81

5 Formalization of the Scheduling Problem 83
51 Mode Hierarchy 84
5.2 Fixed SwitchingModel 87
521 ProblemFormalization 89

522 JobParameters 90

523 Complexity Analysis 92

524 MediumSchedule 93

5.25 Mode Extension for Partialy Blocking Loadsand Unloads 94

5.3 Minimum SwitchingModel 95
531 Example 98

54 LassSwitch-ReadModel oL 99
541 Jobparameters 101

54.2 Extended Switch-ReadModel 102

5.5 Imperative SwitchingModel, 102
5.6 PeriodicQuantumModel L o 102
5.7 Dedicated RobotsModel 107
571 ProblemFormalization 108

572 Example 109

58 Optimal Model 112
59 Summary 112

6 Promote-IT 115
6.1 Scheduling Algorithm 115
6.2 Scheduling Strategies 117

Xii Contents

6.3 DriveandRobot Schedules 121
6.4 Model Extension 122
6.5 Resource Assignment 124
6.5.1 Branch-and-Bound Algorithm 125

6.5.2 JoblIncorporation 128

6.6 MediumSchedule. 132
6.7 Complexity Analysis 135

6.8 Dispatcher 136
6.9 ImplementationNotes. 138
6.10 Comparisonof theStrategies 139
6.11 SumMmMary e 148

7 Alternative Schedulers 149
7.1 Jukebox Early Quantum Scheduler 150
711 Scheduler 150

7.1.2 Dispatcher 155

713 Example 156

7.2 Optima Scheduler 157
7.3 Extensionsto Existing Jukebox Schedulers 162
7.3.1 Extended AggressiveStrategy 162

7.3.2 Extended ConservativeStrategy 163

7.3.3 Fully-Staged-Before-Starting. 163

T4 SUMMAY . . . o e e e e 164

8 Implementation and Simulation Environment 165
81 JukeTools e 165
82 TimeSmulation 167
8.3 InterffacetoHardware 168
84 Output Control andAnalysis 169
8.5 Framework for Pluggable Jukebox Scheduler 171
8.6 Workload and Content Generation 171
8.6.1 Jukebox-ContentsGenerator 172

8.6.2 RequestGenerator 172

8.6.3 Cache-ContentsGenerator 173

8.6.4 Arriva-TimesGenerator 174

8.7 Summary 175

9 Performance Evaluation 177
9.1 Aperiodicvs. Periodic Scheduling 179
9.2 Pipdiningvs. Full Staging oL 184
Contents Xiii

9.3 Early vs. Conservative Dispatching 185

9.3.1 Back-to-Front Strategies 185

9.3.2 JEQSand Front-to-Back Strategies 189

9.4 Decoupledvs. Coupled LoadandUnload 190
9.5 Heuristicvs. Optimal Scheduling 198
9.6 Summary 202

10 Conclusions 207
10.1 Directionsfor FutureResearch 209
Bibliography 211
Titles in the IPA Dissertation Series 221
Biography 225

Xiv Contents

Chapter 1

Introduction

Parkinson’s law of data states that:

‘Data expands to fill the space available for storage’ Buying more
memory encourages the use of more memory-intensive techniques. It
has been observed since the mid-1980s that the memory usage of evolv-
ing systemstendsto double roughly once every 18 months. Fortunately,
the memory density available for the same price aso tends to double
once every 18 months (Moore's Law).

This law is applicable to all kind of storage, not only RAM. Therefore, the need
for large storage devices, such as jukeboxes, has not decreased with the advent of
bigger and cheaper hard disks and RAM. There are three main forces driving the
need for larger storage capacity.

First, there is an ever increasing amount of data that needs to be stored. This data
is the product of scientific measurements and simulations, videos, music, images
and all imaginable type of multimedia data. Conservative estimates state that there
are more than 6 million hours of video stored worldwide and this number grows
at arate of about 10% per year [71]. The output of scientific measurements and
simulations amounts to many terabytes of datadaily [11].

Second, our expectations about the data quality also grow. We want to have more
audio channels, more colours, better definition, wider screens, etc. We can take as
an example the move in video quality going from VHS to DVD to HDTV (high
definition TV).

Third, the number of computer and Internet users grows world-wide. According
to statistics, the number of on-line usersworldwideis 605 million at the end of 2002
[76]. Asthe number of users grows, so does the amount of data that a system hasto
store. On the one hand, if the system provides storage capacity to the users, thereis
aquite direct relation between the number of users and the storage capacity needed.
On the other hand, if the goal the system is to provide contents, e.g., Video-on-
Demand or on-line news, having larger and more complete archives attracts alarger
and more varied user population.

Primary
Increasing Storage \ ¢ Increasing
. (RAM) % :
Price/GB and © Capacity and
Access Speed Secondary Storage Reliability
(Hard Disks)
Tertiary Storage

(Removable Storage Media)

Robotic Exchange
(Jukeboxes)

* magnetic tapes
« optical tapes
« optical discs
* magneto-optical discs \anual Exchange

Figure 1.1: Storage hierarchy.

Additionally, the users’ expectations toward the availability of the data also grow.
First, the data must be accessible to a large number of people, possibly distributed
world-wide. Second, the methods to access the data must permit the combination of
datain aflexible way, independently of its specific storage location and type, e.g.,
to present the result of a database search, or to compose a multimedia presentation.
Third, the data should be promptly available, in order to provide on-line services.

Therefore, thereisastrong motivation to use hierarchical storagein order to store
large amounts of data. Additionally, the data stored in each level of the hierarchy
must be available in atimely manner and be accessible in aflexible way.

1.1 Hierarchical Storage

Figure 1.1 shows the storage hierarchy. The storage capacity and reliability of the
storage increases toward the bottom of the pyramid. The access speed and cost per
gigabyte increases toward the top of the pyramid.

Following Miller [72] we classify data storage devices according to the ease with
which storage media can be switched. At the top of the hierarchy we have RAM
as primary storage, which can be further divided into CPU registers, cache memory
and main memory. The secondary storage level contains devices that require one
device per storage medium, such as magnetic disks and solid state disks.

2 Chapter 1. Introduction

Tertiary storage devices allow the easy removal of media from the drives. There-
fore, one device can read any number of removable storage media (RSM 1). Exam-
plesof RSM areoptical disks (e.g., CD-ROM, DVD-ROM, DV R?), magneto-optical
disks, magnetic tapes, and optical tapes.

Tertiary storage can be further classified by the automation level to switch the
media. Jukeboxes or robotic storage libraries have one or more robots to move the
RSM between the drives and the shelves where they are stored. The RSM can also
be kept in shelves and require human intervention to be loaded in adrive.

The access speed and the capacity to access the datain arandom manner is higher
at the top of the hierarchy. The time to switch RSM in a jukebox is in the order
of seconds or tens of seconds, which implies that multiplexing between two files
stored in different RSM is many orders of magnitude slower than doing the samein
secondary storage. In turn, using a jukebox is much faster than having humans do
the switching.

Therefore, another common classification of the storage levelsis by the availabil-
ity of data—on-line, near-line, off-line. The time to access the data is a function of
this classification. The top two levels provide on-line storage, while jukeboxes pro-
vide near-line storage. When human intervention is required, we talk about off-line
storage.

The availability of data comes at a price. The price to store a gigabyte of data
in main memory is higher than doing the same in hard disks, and still higher than
storing it in a jukebox. A factor frequently overlooked when determining the price
of storing data on hard disks is that hard disks require valuable resources (e.g.,
controllers, power) to keep the data on-line. When using jukeboxes, there are only a
limited number of drivesthat are shared to access two or three orders of magnitude
more RSM.

The storage capacity of the devices increases as we descend in the storage hier-
archy. At present, ajukebox can store few terabytes of dataand thereisvirtually no
limit to how much off-line data may be stored in warehouses. Also, thereliability of
the storage increases as we descend in the hierarchy, which is especially interesting
for long-term storage of data, as backups and archives.

As happens very frequently when devel oping services and systems, there are con-
flicting requirements to meet. On the one hand, we want large and cheap storage,
while on the other hand, we want to access it promptly and in a flexible manner.

Jukeboxes provide cost-effective near-line storage for large amounts of data.
They are specially suited to store bulky data—video, audio, large databases, and
backups—on a permanent basis. However, jukeboxes are not random-access de-

1 The acronym RSM stands both for the singular and the plural.
2 DVR stands for Digital Video Recorder. Thistype of disk isalso caled ‘Blue-ray disc’

1.1 Hierarchical Sorage 3

Network

Personal | Multimedia | Video-on- | Multimedia File Backup Network
MTV Database | Demand |Presentation| Server S
Server ervers
Server Server Server Server (NFS)

Hierarchical Multimedia Archive

|LI

Figure 1.2: System overview with various application specific network servers.

vices and the resources in the jukebox—robots, drives and RSM—are shared and
require exclusive use. This creates the potential for resource-contention problems.
Therefore, in order to use ajukebox effectively it isimportant to schedule the juke-
box resources.

In this dissertation we present a good compromise between the restrictions of
the jukebox and the requirements of the users. We extend the use of jukeboxes to
become a vital part of a rea-time file system. We provide access to data stored
in jukeboxes in a timely manner, guaranteeing real-time deadlines. We define a
protocol that permits to access the datain tertiary storage in aflexible way aslong
as the user defines the data to access and the pattern to access the data in advance.

1.2 Hierarchical Multimedia Archive

Long gone are the days when computers were seen exclusively as working tools.
Computers have found their way into our living rooms as the new generation en-

4 Chapter 1. Introduction

tertainment centre. Time-shifted TV, Video-on-Demand (VoD), and systems that
automatically record TV-programs the user may like are some examples of this
trend for digital video contents in the home. Also frequent activities are listen-
ing to music streamed through the Internet by traditional radio broadcasters and
(semi)personalized radios that try to adapt to the musical taste of the listener.

In order to build a multimedia archive it is important to make the combination of
different filesand mediain arbitrary patterns easy. For media providersit isimpor-
tant to have fast access to large multimedia archives and databases, and be able to
efficiently combine the data on-the-fly—for example to produce documentaries or
provide historical background for news. Consumers, for example, can easily create
personalized music programs from huge archives of music and video clips.

A hierarchical multimedia archive (HMA) is a service that provides flexible ac-
cess to hierarchical storage. The HMA can serve complex requests for the real-time
delivery of any combination of media files it stores. Such requests can originate
from any system that needs to combine multiple and maybe separately stored media
files into a continuous presentation. The HMA can also be used for the more sim-
ple case of a Video-on-Demand application, where the requests are generaly for a
single media file—a movie—to be played from beginning to end.

The hierarchical multimedia archive acts as areal-time file system [33] and, thus,
does not offer application specific services. We envision multiple network servers
running on top of the HMA, where each provides a specific service to the users as
shown in Figure 1.2.

In the Distributed and Embedded Systems group at the University of Twente, we
are concerned with providing end-to-end quality of serviceto the users. Our solution
isto provide the in-time promotion of data from each level of the storage hierarchy
to the next.

In this dissertation we are concerned with the in-time promotion of multimedia
datafrom tertiary storage to secondary storage. In turn, Clockwise [14] can provide
real-time accessto datastored in secondary storage, whichisusedin HMA ascache.
RT-net [41] can provide real-time guarantees for the use of alocal area network.

The HMA uses secondary storage as a buffer and cache for the jukebox. On the
one hand, the bandwidth offered by the devices in a jukebox is generally much
higher than the one required by the end users. Thus, it makes good sense to stage
data in secondary storage buffers from where it is delivered to the applications. On
the other hand, the popularity distribution of the data is generally very skewed—
following a Zipf-like distribution. Thus, some datawill be requested very often and
should be kept in secondary storage to avoid the repeated long retrieval from tertiary
storage.

A reguest to the HMA can consist of multiple streams and non-streamed data
that are synchronized sequentially or concurrently in arbitrary patterns. The request

1.2 Hierarchical Multimedia Archive 5

defines the timeline with which the data must be available. Additionally, the users
can define a deadline for the request that indicates the latest time by which the data
must be available and indicate if the data should be available as soon as possible
(ASAP).

If the HMA accepts and confirms arequest from a user, it iscommitted to provide
the service requested by the user. The confirmation includes the starting time at
which the user can start consuming the datawith the system’s guarantee that the flow
of data will not be interrupted. The request and the confirmation are the contract
between the user and the system. Under high load, the HMA may reject requests.
The goal of the HMA is to provide access to the data as fast as possible (short
response time) and to confirm the requests promptly (short confirmation time).

In a commercial scenario for exploiting an HMA, the user may get a price re-
duction on the payment if the response time is longer than a certain threshold—
probably as a function of the response time. Thisis a good economic incentive for
the provider to minimize the response time of ASAP requests. The system could
also privilege those clients that make requests in advance, for example making a
reguest for amovie one hour earlier than the required starting time. The more users,
themoreincome. Therefore, it is profitable to maximize the number of simultaneous
users and minimize the number of rejected requests. Furthermore, providing a fast
response time and having alow rejection ratio, isagood parameter of the quality of
the systems.

The VoD scenario illustrates the goal to minimize the confirmation time. After
the user makes a request, the system should give a confirmation promptly, so that
the user knows if the request was accepted, and in the case of an ASAP request, also
the time when the video will be available. In this way, the user can plan what to do
until the movie begins. Another possible scenario is that the application providing
the VoD server uses the information contained in the confirmation to fill up the
time until the movie begins with a short video-clip or advertisement. By knowing
in advance the response time, the application can choose one or more videos that
accurately fill in the gap.

1.3 Jukebox Scheduling

The jukebox scheduler is the key component of the HMA that provides the desired
quality of service. The scheduling problem to solve presents an interesting challenge
due to its complexity and conflicting goals.

The main goal of the jukebox scheduler is to guarantee that the data is promoted
to secondary storage by the time applications need it, and guarantee uninterrupted
access to the data. Beyond this, the scheduler tries to minimize the number of re-

6 Chapter 1. Introduction

jected requests, minimize the response time for ASAP requests, and minimize the
confirmation time.

In this dissertation we use anew design of jukebox schedulers, where the schedul -
ing and dispatching functionality are clearly separated. This separation allows usto
improve the performance of the system, because the optimality criteria of both func-
tions are different. The goal of the schedule builder isto find feasible schedules for
the requested data. Thus, the scheduler tries to build schedules as flexible as pos-
sible and is not concerned about the optimal use of the resources. The dispatcher,
instead, is concerned about utilizing the jukebox resources in an efficient manner.
We introduce the concept of early dispatching, by which a dispatcher can dispatch
the tasks earlier than scheduled as long as the resource constraints are respected and
no task misses its deadline.

In order to build efficient schedulersit is necessary to understand the scheduling
problem thoroughly. Thefirst step isto model the hardware and identify the param-
eters that define the hardware behaviour. The hardware model must be flexible to
cover the existing and future hardware. It isused to predict and simulate the jukebox
behaviour. The model playsacrucial role when constructing the jukebox schedules.

The second step is to formally model the scheduling problem. Given the com-
plexity of the scheduling problem there are many different ways in which it can be
modelled. However, each model puts restrictions on the original scheduling problem
to make the problem manageable. We present a hierarchy of scheduling-problem
models and analyze the advantages and disadvantages of each model in the hierar-
chy. We a'so provide schedulers that implement the modelsin the hierarchy. Even if
the models in the hierarchy are simplifications of the original scheduling problem,
they are also NP-hard. Therefore, the algorithms used by the on-line schedulers are
heuristic agorithms, which can compute schedules in polynomial time.

The most important of these modelsis the minimum switching model, which mod-
els the problem as a flexible flow shop with three stages.® The model uses shared
resources to guarantee mutual exclusion in the use of the jukebox resources. This
model puts only a small restriction on the utilization of the resources, which addi-
tionally results in better use of the resources and system performance. The model
requires that once an RSM is loaded in a drive, al the requested data of the RSM
is read before the RSM is unloaded. Thus, the schedules that can be built with this
model have a minimum number of switches.

Promote-IT (Promote In Time) isthe schedul er that we proposein thisdissertation
as the scheduler to usein an HMA. Promote-IT is based on the minimum switching
model. For every incoming request it builds a new schedule that includes all the
previously scheduled request units plus the request units of the new request. It uses

3 The scheduling concepts and terminology are explained in the next chapter.

1.3 Jukebox Scheduling 7

an efficient heuristic algorithm to find a solution to an instance of the minimum
switching model on-line. Promote-1T can deal with any type of request and jukebox
hardware. Additionally, it provides short response times and confirmation times,
and makes good use of the jukebox resources.

We defined different scheduling strategies for Promote-1T, which vary in the way
in which the jobs are added to the schedule. These strategies can be classified as
Front-to-Back and Back-to-Front. When using Front-to-Back each job is scheduled
as early as possible, while with Back-to-Front each job is scheduled as late as pos-
sible. When using Back-to-Front, Promote-IT profits strongly from the separation
of scheduling and dispatching. The scheduler creates schedules with idle times that
are used by the dispatcher to dispatch tasks early. This combination proves useful
in many cases, especially when the use of a shared robot is the bottleneck in the
system.

To prove the efficiency of Promote-1T, we implemented alternative schedulers
based on different scheduling models and scheduling paradigms. On the one hand,
we designed two new schedulers: the jukebox early quantum scheduler (JEQS) and
the optimal scheduler. On the other hand, we extended some heuristic schedulers
proposed in the literature: the extended aggressive strategy, the extended conserva-
tive strategy and Fully-Staged-Before-Sarting (FSBS).

The jukebox early quantum scheduler (JEQS) is a periodic scheduler. The ba-
sic heuristic used by a periodic scheduler is to represent the requests as periodic
tasks. A restriction of periodic schedulers is that they can be used only for some
special use cases of HMA, as Video-on-Demand, because they are unable to deal
with complex requests. Additionally, periodic schedulers have serious problemsin
avoiding resource-contention problems. JEQS solves these problems by using the
robots and drives in a cyclic way. The robot exchanges the contents of each drive
at regular, fixed intervals. This resultsin a cyclic use of the drives, which are dedi-
cated to reading data of an RSM while the other drives are being served by the robot.
Although, JEQS is generally able to start incoming requests in the next cycle of a
drive, its performance is much worse than that of Promote-1T. We show, however,
that this poor performance is characteristic of any periodic jukebox scheduler.

The optimal scheduler is a scheduler that computes the minimum response time
for each incoming request. The objective of this scheduler is to be used as a base-
line for evaluating the quality of the heuristic schedulers. The optimal scheduler
cannot be used in areal environment due to its computing-time requirements. The
computing time increases exponentially with the complexity of the requests and the
system load. Therefore, we can only use it for evaluation of small test sets and rela-
tively low system load. The comparisons we performed show that the performance
of Promote-IT is near the optimum, at least under these special testing conditions.

8 Chapter 1. Introduction

We developed atoolbox called JukeTools to easily implement, evaluate and com-
parejukebox schedulers. We implemented and eval uated the af orementioned heuris-
tic schedulers using JukeTools. The evaluation showsthat Promote-1T performs bet-
ter than the other heuristic schedulers.

1.4 Summary

Summarizing, the results of the dissertation are

e The hierarchical multimedia archive, which is a new application for tertiary-
storage jukebox that provides real-time access to any combination type of
media stored in the jukebox

e A new design of jukebox schedulers, where the scheduling and dispatching
functionality are clearly separated

e A hardware model that can represent virtually any type of jukebox

e A thorough study of the scheduling problem and the resulting hierarchy of
scheduling-problem models

e Promote-IT, an efficient heuristic scheduler based on the minimum switching
model, which can deal with any type of jukebox and request

e Alternative schedulers to evaluate the performance of Promote-IT: JEQS,
an optimal scheduler, extended versions of the aggressive and conservative
strategies of Lau et a., and a Fully-Staged-Before-Starting scheduler

¢ JukeTools, atoolbox for implementing and evaluating jukebox schedulers

e A performance comparison of the different schedulers, which shows that
Promote-IT performs better than the other heuristic schedulers, and addition-
aly provides response-times near the optimum in cases where the optimal
scheduler can be evaluated

1.5 Qutline of the Dissertation

Chapter 2 presents related work. It reviews other jukebox schedulers and discusses
their strengths and weaknesses. It also gives an overview of scheduling in related

14 Summary 9

environments and shows common features with our scheduling problem and solu-
tion. This chapter also gives a short overview of scheduling theory, both aperiodic
and periodic, and describes the notation used in the rest of the dissertation.

Chapter 3 describes the HMA in detail and discusses some usage scenarios. It
formally defines the user requests. It describes the architecture of the HMA and
describes the separation between schedule building and dispatching. The system
architecture serves also as road map for the following chapters.

Chapter 4 presents the hardware model. It gives an overview of jukebox tech-
nology, specially focusing on optical jukeboxes. It provides a comprehensive model
that is used to build the schedules and to simul ate the jukebox hardware. It presentsa
short validation of the hardware model for the hardware available in our laboratory.
This chapter also formalizes the functionality of the jukebox controller.*

Chapter 5 gives a thorough analysis of the scheduling problem and presents a
variety of scheduling-problem models. These modelsinclude the models underlying
the most relevant schedulers discussed in Chapter 2. It analyzes the strength and
weakness of each model and provides a justification for choosing the minimum
switching model asthe model for Promote-IT.

Chapter 6 describes in detail the scheduling algorithm used in Promote-IT. It
presents the different scheduling strategies of Promote-IT: earliest deadline first,
earliest starting time first, latest deadline last and latest starting time last. It also
discussesthe early dispatcher that makes the Back-to-Front strategies so interesting.

Chapter 7 presents the other two new jukebox schedulers: the jukebox early quan-
tum scheduler (JEQS) and the optimal scheduler. It also presents the extensions to
some existing jukebox schedulers, which we use to evaluate the performance of
Promote-IT.

Chapter 8 describes the implementation and simulation environment of the juke-
box schedulers. It presents JukeTools, the toolbox used for implementing and com-
paring the jukebox schedulers.

Chapter 9 provides a comparison of the different jukebox schedulers. It shows
that Promote-IT is able to provide shorter response times than the other heuristic
schedulers and that the response times of Promote-IT are near those of the optimal
scheduler.

Finally, Chapter 10 presents some conclusions that can be drawn from this re-
search and briefly discusses possible directions for future research.

4 Chapter 4 is arelatively stand alone chapter. It can easily be used as a reference to jukebox hard-
ware, independently of the scheduling problem presented here. The details about the hardware
technology can be skipped without missing the important concepts of the scheduling problem.

10 Chapter 1. Introduction

Chapter 2
Background and Related Work

This chapter provides a framework for our work by introducing the main concepts
of scheduling theory, both aperiodic and periodic, and discussing related work. It
discusses systems that schedule jukeboxes in real-time, and shows that so far only
aperiodic schedulers have succeeded in effectively providing real-time guarantees.
The periodic schedulers suffer from resource-contention problems. Thus, they can-
not guarantee that the deadlines are met when a contention problem is encountered
during the execution of a schedule.

This chapter presents jukebox schedulers with no real-time goals. The research
on this topic shows the importance of reading all the requested datafrom an RSM at
once. Theseresults support the approach we usein Promote-1T. Also, the scheduling
of asingle medium is discussed inasmuch as the techniques can be used for reading
the data once an RSM isloaded in adrive.

We also present research in scheduling automated storage/retrieval systems, be-
cause these systems are similar to tertiary storage jukeboxes. Therefore, our results
can be applied in the production environment. Finally, we discuss scheduling in lo-
gistic applications that have some important features in common with our schedul-
ing problem.

2.1 Scheduling Theory

This section shortly introduces scheduling theory and defines the vocabulary and
notation used in this dissertation. Scheduling theory can be classified into two main
streams:. aperiodic scheduling and periodic scheduling. Aperiodic scheduling isin
general referred to simply as ‘ scheduling theory’ and is mainly used in manufactur-
ing and logistics, while periodic scheduling is strongly related to real -time computer
systems.

The notation of both types of scheduling sometimes conflicts. In this disserta-
tion we are mainly concerned with aperiodic scheduling and use the corresponding
notation. We will clearly specify the use of periodic-scheduling notation.

11

2.1.1 Aperiodic Scheduling

Scheduling problems are characterized by three sets: set 7 = {T;, T, ..., To} of n
tasks, set P = {Py, Py, ..., Pm} of m processors (machines), and set R = {Ry, Ry,
..., R} of stypes of additional resources.

Scheduling isto assign processors from ¢ and resources from R to tasks from 7~
in order to complete all tasks under the imposed constraints. A scheduleis such an
assignment as a function of time. Each task is processed by at most one processor
at atime and each processor is capable of processing at most one task at atime.

A schedule is called preemptive if each task may be preempted at any time and
restarted later with no additional cost. If preemption is not alowed, the schedule is
called non-preemptive

A scheduling problem IT is defined by a set of parameters grouped in a triplet
a | B | y[37 13]. The a field describes the processor environment, the g field
describes task and resource characteristics and the y field denotes the optimality
criterion. For example, 1| r; a,- | — represents the scheduling problem of finding a
feasible schedule for tasks with deadlines and arbitrary release times in a unipro-
cessor environment. We describe the possible values of the parametersin the rest of
the section.

Aninstance | of problem IT is obtained by specifying particular valuesfor all the
problem parameters.

A scheduling algorithmis an algorithm which constructs a schedule for a given
problem TI.

Processor Environment

The processors are characterized as parallel or dedicated depending on the capacity
of the processors to perform the same functions (parallel) or if the processors are
specialized for the execution of certain tasks (dedicated). There may of course be a
single processor indicated by a = 1.

When using dedicated processors the tasks form n subsets, each subset called a
job. Each job, J; isdivided into n; tasksin the following way J={Ty;, Ty, ..., Taj}.
Two adjacent tasks are to be performed on different processors. A set of jobs is
denoted by 7.

The parallel processors are further classified depending on their speeds according
to the criteria shown in Table 2.1. The dedicated processors are classified according
to the way in which the sets of tasks are processed (described in Table 2.1).

A flexible flow shop is a generalization of the flow shop and the parallel machine
environments. Instead of m processors in series there are s stages in series with a
number of processorsin parallel at each stage. The parallel processors can be either

12 Chapter 2. Background and Related Work

Notation | Description

1 single processor
Pm midentical parallel processors with equal processing speeds
Qm m uniform parallel processors with different speed, where the speed is
independent of the processed tasks
Rm m unrelated parallel processors with the processing speed dependent on
the processed tasks
Om open shop with m dedicated processors, where the number of tasks is

equal to the number of processors and each task Tj; must be processed by
processor P

Fm flow shop with m dedicated processors in series with the restrictions of
open shop, plus the restriction that each task Ti_1j; must be processed
before task Tj;

Im job shop with m dedicated processors, where the number of tasks per job

(ny) is arbitrary, but each task Tj_1j must be processed before task Tj;
FFs flexible flow shop with s stages in series with parallel machines at each

stage

Table 2.1: Parameters of the processor environment («)

identical, uniform or unrelated. The minimum switching model we propose uses
a flexible flow shop with three stages and unrelated processors at each stage (see
Section 5.3).

When working with dedicated processors, it is usually assumed that there are
buffers of unlimited capacity among processors and ajob may wait after completion
on one processor before its processing starts on the next one. If the buffers are of
zero capacity, ano-wait property is assumed.

Blocking is a phenomenon that may occur in flow shops when there is a limited
buffer between two successive processors. When the buffer isfull, the upstream pro-
cessor is not allowed to release ajob. The job hasto stay in the upstream processor,
preventing—or blocking—the processor of working on another job.

Task and Resource Characteristics

Thetasks T; of 7~ are characterized by the data detailed in Table 2.2, which is used
to indicate for example if the tasks have deadlines or priorities, if the tasks have
different processing and arrival times, etc.

Additionally, the tasks may have resource and precedence constraints. The re-
source constraints define additional scarce resources the tasks may need. There are
different types of resources: renewable, nonrenewable and doubly constrained [12,
Chapter 7]. Renewable resources are classified by parameters A 6p that denote, re-

2.1 Scheduling Theory 13

Notation | Description

Pj vector of processing times [pyj, Py, - - - , Pmj], Where pjj is the time needed
by processor P; to process T;

r arrival time or ready time indicating the time at which the task is ready
for processing

dj due date indicating the time limit by which T; should be completed and
to which penalties are associated

a,- deadline indicating a hard real-time limit by which T; must be completed

W weight or priority of T;

Sik sequence dependent setup times between T; and T (if the setup times
depends on the machine, then the subscript i is included, i.e., Sjk); Sok
denotes the setup time for Ty if Ty is first in the sequence and s the
clean-up time after T;

M; machine eligibility restrictions to process the task T;

Table 2.2: Parameters of the tasks and resource characteristics (B)

Notation | Name Computation
G completion time
Fj flow time Fj = Cj =T
L |ateness Lj=GC - dj
D; tardiness D;j = max(Cj - d;, 0)

Table 2.3: Computable parameters of the scheduled tasks

spectively, the number of resource types, resource limits and the maximum resource
requirement of each task. The precedence constraints define the requirements that
one or more tasks may have to be completed before another task is allowed to start
processing.

Optimality Criteria

There are different criteriato evaluate schedules. The criteriapresented in Table 2.4
are the most commonly used. The optimality criterion is computed using the com-
puted parameters for the tasks in the schedule, which are described in Table 2.3.

A schedule for which the value of a particular performance measure y is a its
minimum is called optimal, and the corresponding value of y is denoted y*.

If minimizing any of these parameters is the goal, the scheduling problem is an
optimization problem. However, it can aso be viewed as a decision problem to
decide if for agiven set of deadlines, there is a schedule with no late tasks. Thisis
denoted asy = —.

14 Chapter 2. Background and Related Work

Notation | Description
L max maximum lateness computed as Liyax = max{L;}; when Lyax < 0 then the
schedule has no late tasks
U number of tardy tasks computed asU = 3,1, Uj, where Uj = 1if Cj > dj,
and 0 otherwise
Uw weighted number of tardy tasks computed as Uy, = Zj”:lvvj Y
Cax schedule length or makespan computed as Cyayx = max{Cj}

- feasibility
Table 2.4: Optimality criteria (y)
Notation | Name Description

G processing time | expected worst-case execution time of an instance of
the task

T period how often is the task activated?

D; relative deadline | deadline of the task relative to the period

oi phase activation time of the first instance of the task

O shared resources | set of shared resources that must be obtained and re-
leased in every instance of the task

Table 2.5: Parameters of a periodic task ;

In this dissertation we are mainly concerned with feasibility as optimality criteria.
We consider a scheduling algorithm optimal, if it is able to produce a schedule
for the most restrictive set of deadlines that are schedulable. That means that the
algorithm will always find a solution when a solution is possible.

2.1.2 Periodic Scheduling

Periodic tasks consist of an infinite sequence of identical activities, called instances
or jobs, that are regularly activated at a constant rate. A periodic task is generally
denoted as 7; and a set of periodic tasksisdenoted asT'.

Table 2.5 defines the parameters of a periodic task. T;, C; and D; are considered
to be constant for each instance. In general, the deadline of the task is equal to the
period (D; = T;). Figure 2.1 shows an example of a periodic task.

In turn, we can also refer to the parameters of a particular instance iy of the task
7;. Therelease time of the instance is denoted asrj, and the absolute deadline of the
instance is denoted as dix and computed as dix = ¢ + (k— 1)T; + D;. The activation
time of 7j iscomputed as ¢; + (K — D)Ti;.

There are three important concepts defined for a periodic task set: the processor
utilization fraction U, the processor demand H(t) and the slack St).

2.1 Scheduling Theory 15

| | 1 = |

first instance

Figure 2.1: Example of aperiodic task.

Given aset of n periodic tasks, the processor utilization factor U isthe fraction of
processor time spent in the execution of thetask set [68]. The utilization iscomputed
as

U= .le ?,I (2.3)

If the utilization is greater than 1, the task set cannot be scheduled by any algorithm.
An important result in periodic scheduling theory isthat if the tasks are scheduled
using earliest deadline first (EDF), atask set I' is schedulable if and only if U < 1
[68]. However, this important result can only be used for preemptable tasks with
deadline equal to the period and no shared resources.

The processor demand H(t) determines the accumulative load that needs to be
resolved so that all tasks in I' meet their deadlines. In order for all tasks to meet
their deadlines V't : H(t) < t. The processor demand is defined as follows:

H(D = ZL Al (22)

The dlack time S(t) is the difference of the processor capacity and the processor
demand at time t. If the processor is not fully loaded, the slack will be greater than
0. The slack timeis useful to execute some tasks with a higher priority or to execute
‘best-effort’ tasks as soon as possible. The slack time is defined as:

Vi St =t - H() (2.3)

2.1.3 Problem Complexity

Most of the scheduling problemsare NP-hard. Asdefined in [9, page 27], NP-hard
is the complexity class of decision problems that are intrinsically harder than those
that can be solved by anon-deterministic Turing machinein polynomial time. When
a decision version of a combinatorial optimization problem is proven to belong to
the class of NP-complete problems (e.g., travelling salesman problem), then the
optimization version is NP-hard.

16 Chapter 2. Background and Related Work

There are different approaches to reduce the complexity of a scheduling prob-
lem. One approach is to relax some constraints imposed on the origina problem
and solve the relaxed problem, e.g., assuming unit-length tasks, alowing preemp-
tion. Another approach is to use heuristic algorithms, which try to find an optimal
schedule but do not aways succeed. The advantage of the heuristic algorithms is
that they are polynomial. If the heuristic algorithm can be evaluated for its accuracy,
it is called an approximation algorithm. The accuracy or ‘goodness of an approxi-
mation algorithm is measured by the difference between the value of the solutions
it produces and the value of the optimal solutions. The values to take into account
when measuring the accuracy are the mean behaviour and the worst-case behaviour.
In general the mean behaviour of the approximation algorithm is much better than
the worst-case behaviour, thus justifying its use. The method generally used for
evaluating a heuristic algorithm is to compare its solutions with those produced by
the optimal algorithm for alarge sample of instances.

2.2 Scheduling of Tertiary Storage

Scheduling of tertiary storage has been studied mainly in the context of Video-on-
Demand (VoD) systems and in systems with no time constraints. An assumption
in typical VoD systems is that requests are for a single media file to be played
continuously from beginning to end.

Subsection 2.2.1 present schedulers that can be used to deal with the type of
complex requests proposed for the HMA, i.e., the requested data can be stored
in multiple RSM and be a combination of continuous and discrete data. Subsec-
tion 2.2.2 discusses schedulers for continuous-data stored in one RSM. Subsec-
tion 2.2.3 presents some schedulers that have unsolved contention problems. They
cannot guarantee that an RSM is not assigned to two different drives during the
same time period and, thus, cannot guarantee that the real-time deadlines are al-
ways met. Subsection 2.2.4 presents schedulers for systems where the requests do
not have real-time constraints. Subsection 2.2.5 discusses work on retrieving data
of asingle medium, as atape or adisk.

2.2.1 Schedulers for Complex Requests

In this subsection we present two schedulers that are capable to deal with complex
requests as the ones used in the HMA. Although the scheduler of Lau et a. was
designed to serve requests for Video-on-Demand, we can easily extend it to more
flexible requests, because the data of the video can be stored in multiple RSM in
arbitrary ways.

2.2 Scheduling of Tertiary Sorage 17

Lau et a. [61] present an aperiodic scheduler for VoD systems that can use two
scheduling strategies: aggressive and conservative. When using the aggressive strat-
egy each job is scheduled and dispatched as early as possible, while when using the
conservative strategy each job is scheduled and dispatched aslate as possible. These
two strategies are similar to the EDF and LDL strategies that we use in Promote-IT.

Their scheduler is part of ahierarchical multimedia storage server, which consists
of atape-jukebox with identical drives for storing video on a permanent basis and
adisk array for caching. The authors are concerned mainly with Video-on-Demand
applications and assume that the video objects are consumed with the same band-
width as they were recorded. Thus, the user cannot request to view the video at a
higher speed for viewing the video in fast-forward.

The system has full knowledge of the data layout in tertiary storage. A file is di-
vided into pages of equal size. The pages are further divided into fragments that are
striped through the disk array in secondary storage. Due to compression, the frag-
ments may contain different numbers of video frames. The system keeps a database
with a mapping of video frames to fragments, so that it can provide constant frame
rate at the display with variable bit rate 1/0 retrieval.

Although there is a difference between their system and ours in the service pro-
vided and the way the data is stored, their scheduling algorithm can also be used
for more flexible requests. We have implemented extensions of both the aggres-
sive and conservative strategy to operate within the HMA, and compare them with
Promote-IT.

An important difference between the strategies of Lau et al. and Promote-IT, is
that they dispatch the tasksin the same sequence and time as assigned in the sched-
ule. Thus, the conservative strategy performs poorly, because it |eaves the resources
idle, even when there are tasks that need executing.

Another important difference is that the algorithm handles the jobs to include
in the schedule as formed by a read task and a switch task. The switch task is
scheduled as a unity, although it involves unloading the RSM loaded in the drive
and loading the new RSM. In Chapter 5 we present the forma model underlying
their approach, which is basically aflexible flow shop with two stages (FF»,). In the
first stage there is one processor—the robot—and in the second stage there are m
identical processors—the drives.

Lau et a. assume that all the drives are identical and that the switching time is
constant, independently of the drive and shelf involved. The former assumption is
reasonable in many jukeboxes, but makes the algorithm difficult to generalize to the
case with non-identical drives. The latter assumption is not reasonable in most of
the large jukeboxes and forces to use worst-case switching times when building the
schedules. Using more accurate switching times provide better schedules.

18 Chapter 2. Background and Related Work

There are several important problems when modelling the scheduling problem as
aFF,. Onthe one hand, that the drives are | eft loaded until anew request arrivesthat
usesthe drive. This meansthat even if the robot and the drive are idle, the robot will
not unload the drive. Our experience has shown that thisis a bad approach, because
the probability that new data will be requested from an RSM that is loaded at the
time of computing the schedule is low. On the other hand, the scheduler cannot
make use of small holesin the robot schedule.

A natural consegquence of assuming identical drives and constant switching times
is that the algorithm only tries assigning atask to one drive. If it fails, it concludes
that the task cannot be scheduled. In the case of non-identical drives and/or vari-
able switching times, this approach is a clear over-ssimplification as we show in
Section 6.5.1.

Additionally, the conservative strategy suffers from the problem that it cannot be
generalized to the case where the switch time is not constant and still be based on
a FF,. The conservative strategy schedules the unload of a tape whose identity is
unknown, because every time it schedules a read it also schedules a switch. The
switch includes unloading the tape that is loaded in the drive before the one being
scheduled. But the schedul e is built Back-to-Front and so the scheduler still does not
know which tape is loaded in the drive. In Section 7.3.2 we propose an extension
to the conservative strategy based on the minimum switching model, which uses a
three-stage flexible flow shop (FF53).

We could extend the aggressive strategy for other kind of jukebox architectures,
while still using an FF,. The extension can deal with non-identical drives, variable
switching times, and multiple robots. However, the model still has restrictions re-
garding the scope and functionality of the robots, which originate in the fact that
the unload and load operations are coupled. Moreover, in Chapter 9 we show that
coupling the unload and load operations has a negative influence on the scheduler
performance.

The argument given by the authors for and against these strategies is that the
aggressive strategy makes better use of the jukebox resources, while leading to a
higher page miss ratio, because the pages may be retrieved into the cache much
earlier than needed. The conservative strategy instead makes bad use of the jukebox
resources, leading to bad response times when the system load increases.

We show in Chapter 9 that the conservative strategy is unable to handle even
reasonable |oads, because it very soon creates a system overload. The reason for the
overload isthat the jukebox resources are left idle at moments when the system |oad
is not high and that time cannot be recuperated later, when more requests arrive. In
our tests the cache-hit rate of the conservative strategy is not better than that of the
aggressive strategy.

2.2 Scheduling of Tertiary Storage 19

Federighi et al. [29] use requests similar to those of the HMA. In their system the
videos may be stored in multiple objects, with different sound tracks and subtitles
corresponding to each video. The requests may consist of multiple objects (in the
terms of HMA, multiple request units). The requestsin their system have soft dead-
lines, e.g., the data should be available at around eight o’ clock. Federighi et a. are
mainly concerned about balancing the load on distributed video file servers, which
are placed near the users[19]. The scheduler clusters the objects requested from the
same tape. The request increases in priority as the time of the deadline approaches.
Once a request has reached enough priority to stage the data, the corresponding
tapes are scheduled for retrieval.

An important difference with our approach is that, even if the requests consist of
multiple objects, the playback only begins once all the objects are available at the
video file servers. Werefer to thistype of approach as Fully-Saged-Before-Sarting
(FSBS). In the next subsection we discussin more detail full staging, pipelining and
direct access. All the schedulers that we propose in this dissertation use pipelining
(directly or indirectly), which means that the data of a request can be consumed
while other data of the request is being staged.

2.2.2 Schedulers for Simple Requests for Continuous
Media

The schedulers we discuss in this subsection provide access to continuous-media
stored in one RSM. The requests are much simpler than those of the HMA and the
systems discussed in the previous subsection. The topic that is mainly discussed
by the authors is (a) if the data should be streamed directly from tertiary storage
to the end-users, called direct-streaming, (b) if the data should be fully staged in
secondary storage before beginning to stream it to the user, or (c) if the data should
be pipelined, i.e., overlapping staging on secondary storage and streaming to the
user.

Chan et al. [21] stage a movie completely in secondary storage before it is dis-
played to the user, because their goal is to provide interactive VoD services. They
are mainly concerned with providing the user the possibility to interact with the dis-
play by issuing fast-forward, rewind and pause commands. Thus, once the user is
granted access to the movie, he must also be granted the possibility to interact with
the movie presentation in real-time. Therefore, the user is given access to the movie
only once the movie is completely staged.

Our approachisthat it istherole of the network servers (or client applications) to
deal with user interaction and not of the HMA. A network server can provide inter-
active VoD as proposed by Chan et al. by requesting all the datato be staged ASAP.

20 Chapter 2. Background and Related Work

Whereas other VoD network servers can deal with user interaction by making a new
ASAP request to the HMA to fulfil the new requirements of the user.

Chervenak et al. [22, 23] concludes that jukeboxes are not the appropriate devices
to provide storage for a Video-on-Demand system. They suggest that the solution
Is to increase dramatically the number of drives in the jukeboxes or using a disk
farm based on hard disks. However, they do not consider the possibility of using a
real hierarchical storage system. Instead, their approach is to stream data directly
from the drives to the user. What they propose as hierarchical storage is to store
the most popular videos in secondary storage and the rest of the videos in tertiary
storage. The videos stored in tertiary storage are either accessed directly from there
[22] or fully staged into secondary storage [23]. Chervenak also considers that the
data may be striped on multiple tapes to achieve the desired bandwidth when using
direct-streaming, in which case more than one drive needs to be reserved for the
whole duration of the display.

Pang [78] shows that, in most cases, providing direct access from the drives
makes poor use of the jukebox resources, resulting in poor system performance.
He proposes an algorithm called Asdac that intelligently decides when to stage data
in cache and when to provide direct access. Pang is concerned with providing access
to large continuous-media objects. However, he assumes that al the data must be
staged in secondary storage before the user is given access to the data. We believe
that if the user is given access to the data before the whole object is staged, for ex-
ample by dividing the request into multiple request units as done in the HMA, then
staging is always superior to direct access.

Triantafillou et al. [108] propose a combination between direct-access and stag-
ing in which some data is streamed directly to the user while other isfirst stored in
secondary storage. They alter the sequence in which the videos are stored, so that
in a periodic way the drive will be reading exactly the frames that can be streamed
directly. Computing the new sequence strongly depends on the drives used. There-
fore, al the drives must be identical and an update in the drive technology forces
to regenerate all the sequences. Additionally, if the purpose is to cache the files
in secondary storage, the data streamed directly to the user must still be stored in
secondary storage. Thus, it does not lead to real savingsin cache space.

Ghandeharizadeh et a. [35] show the benefits of using pipelining without making
any assumptions on how the data is stored in the RSM. The only restriction is that
the data should be stored in one RSM. They divide the object to retrievein slicesand
compute the response time of a request by computing the time needed to retrieve
the dices that are not in the cache. They provide a method to compute the response
time once the RSM isin a drive that works for any relation between the bandwidth
of the display and the bandwidth of the drive (i.e., the requested bandwidth may be
lower or higher than the bandwidth of the drive).

2.2 Scheduling of Tertiary Sorage 21

2.2.3 Schedulers with Unsolved Contention Problems

We now discuss briefly other approaches that, although they are interesting, do not
deal correctly with the resource-contention problem. Thus, they cannot guarantee
meeting their deadlines, because in the case of a resource conflict the scheduler
will either miss a deadline or crash. Therefore, these schedulers cannot be used
for jukeboxes with multiple drives and, so, are not suitable to be used with most
commercia big jukeboxes, which have multiple drives.

Boulos et a. [17, 16] extend the scheduler of Ghandeharizadeh we discussed in
the previous subsection to objects stored in multiple RSM. They use an aperiodic
scheduler to compute the starting time of a request. For each drive they keep a
queue that contains the blocks that need to be read by the drive. Each element in
the queue indicates the deadline and the time assigned to it. They incorporate new
elements into the queue using an aperiodic EDF algorithm. Their approach does not
have RSM-contention problems, because they retrieve all requested data from an
RSM using the same drive. However, they cannot guarantee that there are no robot-
contention problems. They consider that the robot is not a source of contention, and,
thus, do not scheduleits use. Our research clearly shows that the robot isin general
a source of contention. The robot tends to be the bottleneck in the system, due to
the slow switching speed when compared with the reading speed of the drives (see
Chapter 4).

Lau et a. [62] present another approach to schedule the requests of the hier-
archical multimedia storage server for Video-on-Demand introduced in Subsec-
tion 2.2.1. This approach, which they generically termed time-slice algorithm, con-
sists of breaking up the requests into many tasks which are served separately in
order of increasing task number.

Each request is assigned a time-slice period, which represents the duration of
each task corresponding to the request. During this time-dlice, the task must read
the data and perform the required tape switch. Contrary to the approach we use in
our periodic scheduler, JEQS (see Section 5.6), the size of the time-dlices is not
constant, but varies and must be computed for each incoming request.

Lau et a. deal with the robot contention that arises from having a shared robot
by using the worst-case robot waiting time in the feasibility analysis. They assume
that in the worst case, before executing each task there will be a robot contention.
This considerably restricts the resource utilization that can be achieved.

However, they do not deal with the tape-contention problem. The algorithm does
not take into account that multiple tasks may need to read data from the same tape.
They assign drives to tasks on a per task basis, ignoring to which drives other tasks
for the same tape were assigned. Thus, it can happen that two tasks that need to read
data from the same tape are assigned to different drives during overlapping periods.

22 Chapter 2. Background and Related Work

They propose two algorithmsto schedul e the tasks: the round-robin algorithm and
theleast-slack algorithm. When using the round-robin a gorithm, the active requests
are served in the same order in each round of service. A disadvantage of the round-
robin algorithm isthat it can only incorporate new requests to the system at the end
of around. The least-slack algorithm tries to incorporate new requests as soon as
possible, without having to wait until the end of around. This algorithm also adds a
deadline to each task and computes a schedule with all the tasks. The algorithm can
incorporate a new request to begin immediately if every task has enough slack.

The least-dlack algorithm may look similar at first glance to the approach we
use in JEQS, but it is redly quite different. On the one hand, Lau et a. do not
use periodic scheduling theory to give guarantees about the schedulability of the
regquest. Instead, they transform the problem into an aperiodic scheduling problem
where instances of the same request have to be scheduled separately. On the other
hand, by not determining a priori how the shared robot is used, the computation of
the maximum possible utilization has to take into account the worst-case scenario
of having to wait for the robot to finish moves on all the other drives. Last, but
not least, their algorithm cannot guarantee meeting real-time deadlines, while JEQS
can.

A possible advantage of the least-slack algorithm over JEQS, is that the system
could adapt the size of the slices when the load of the system increases, forcing to
read more data every time atape isloaded and, thus, increasing the efficiency in the
use of the jukebox resources.

Golubchik et al. [36] propose a periodic scheduler called Rounds. The data is
staged from a tape jukebox to secondary storage, from where it is streamed to
the user. The usage environment is a multimedia storage-server application such
as Video-on-Demand.

The entire database is stored in tertiary storage in pages of constant size. Gol-
ubchik et al. assume that each retrieval of a page requires a tape exchange—Iload,
seek to the required page in the tape, the read itself, rewind and unload. The time
required for these operations is termed cycle time.

Each request is a tuple (b, p), where b is the bandwidth and p is the number of
pages. The bandwidth b is bounded by a minimum and maximum accepted band-
width. The goal of the scheduler isto provide alow and predictable response time
(or latency) and make good use of the hardware.

Golubchik et a. assume that the pages are randomly distributed among the tapes.
Furthermore, they assume that the p pages of a request are stored in p different
media. However, the way in which the pages are stored in the jukebox (randomly
distributed) does not provide any guarantee that two pages in the same request will
not correspond to the same tape. Moreover, they do not deal with the fact that there
may also be conflicts on using the same tape by different requests.

2.2 Scheduling of Tertiary Storage 23

When a new request arrives at the system, the tertiary storage subsystem needs
to reserve periodic slots on the tape drives for the entire length of the request. The
periodicity of slot reservation corresponds to the bandwidth of the request. Slots cor-
responding to different drives are staggered from each other by the ‘ robot-latency’,
because if the drives were synchronized all drives would require the robot to ex-
change tapes simultaneously. The staggering of the drives is the same approach we
use in the periodic quantum model presented in Section 5.6.

Chaet al. [20] use a jukebox scheduler based on a periodic EDF scheduler [68],
which deal s neither with the robot-contention problem nor with the RSM-contention
problem. Therefore, in the best case, this scheduler could be used for jukeboxes
with one drive. However, even for these ssmple jukeboxes, the scheduler cannot
guarantee meeting the real-time deadlines. The authors do not take into account
that the tasks are non-preemptive, because every media switch certainly does not
take negligible time. However, the EDF algorithm without additional modifications
works only for preemptive tasks.

2.2.4 Schedulers for Requests for Discrete Data

We now present some schedulersfor theretrieval of datafrom tertiary storage, when
the requests do not have time constraints. The goal of these schedulers is to min-
imize the average response time. In al cases, the conclusion is that as much data
as possible should be read from an RSM when the RSM is loaded in the drive.
This serves as support for the minimum switching model that we propose in this
dissertation.

Triantafillou et al. [107] propose using a hierarchical scheduling algorithm—
CLUST—for scheduling non real-time requests on a tape library. The requests are
simple: they consist of the tape identifier, the starting block and the number of
blocks. CLUST groups the incoming requests according to some criterion, such
as the tape needed. At the upper level CLUST uses an algorithm to determine what
group to process first. At the lower level it uses an algorithm to schedule the tasks
inside the group.

The upper-level agorithm of CLUST isavariation of the round-robin algorithm,
which picks up the tape with the longest request queue. This algorithm can suffer
from starvation. In practice, however, it achieves relative fairness and good perfor-
mance, because it keeps popular tapesin the drives. The lower-level algorithm looks
for the optimal schedule for reading data from the tape. A heuristic algorithm can
also be used at thislevel.

Triantafillou et al. also present another algorithm called SATF (Shortest Access
Time First), which isnot hierarchical. SATF isagreedy algorithm that always picks
up the requests that need the shortest accesstime. Thisalgorithm may lead to starva-

24 Chapter 2. Background and Related Work

tion, but when the system load is high it has the potential of minimizing the number
of media switches.

The authors show that CLUST performs better than SATF. They also show that
both algorithms perform better than the OPT(N,K) algorithm, which computes the
optimal schedule for the first K requestsin the queue. Their explanation for the bad
performance of OPT(N,K) is that it only takes into account the first K requests.
Computing the optimal schedule is out of question because the complexity of the
problem is exponential.

Georgiadis et al. propose the Relief algorithm [34], which choosestherelief ratio
of each request as the time the request has been waiting in the system divided by
the time the system takes to serve the request. The system favours the requests that
have either been waiting for along time, thus, trying to reduce the average response
time, or that can be served fast, for example, because the tape is aready loaded.
Relief isan improvement over another algorithm proposed in the same paper, called
Bypass, which always favours requests for the tapesin adrive. Bypassisunfair and
may lead to starvation.

Prabhakar et al. [88, 87, 86] show the benefits of reading al the requested data
from an RSM before the medium is unloaded. Furthermore, they show that these re-
sultsare valid both for optical and tape jukeboxes, even when the seeking time dom-
inates over the switching time, as is the case with some serpentine tape-jukeboxes
(see Section 4.1.2 for more detail s about tape technology).

They order the RSM by non-increasing ratio of number of requests to the sum
of processing time and switch time. Their goal isto minimize the average response
time. Their algorithm is optimal when there is only one drive, and performs very
well when there are multiple drives. The scheduling problem for multiple drivesis
NP-hard, thus, their algorithm is not optimal in that case.

Moon et a. [73] show that grouping al requests for an RSM results in a perfor-
mance near the optimal. Their simulation environments consist of an optical and a
tape jukebox with one drive and a small number of only 10 shelves. Their appli-
cation environment is retrieving large database objects without real-time deadlines.
Their goal is to minimize the average response time and the total response time.
They evaluate three strategies for selecting the RSM: Round Robin (RR), Maximum
Processing Time (MPT), and Maximum Number of Queries (MNQ). They compare
these strategies against First-Come-First-Serve (FCFS) and an optimal scheduler.

The work of Moon et al. shows that scheduling tertiary storage is important, es-
pecially when the system load increases. It shows that the performance of the three
strategiesis near the optimal when compared against FCFS. The comparison among
the three strategies shows that MNQ is the best, followed by MPT and RR.

More et a. [74] are concerned with performing queries on data that is stored
in multiple tapes. Thus, a query may have multiple request units without real-time

2.2 Scheduling of Tertiary Storage 25

constraints. Their goal isto minimize the response time of each query. They model
the scheduling problem as a two-machine flow-shop with additional constraints. In
their model, the unload and load of a tape are coupled. They propose the longest
transfer-time first (LtF) algorithm that for each query starts reading first the data
of the sub-queries that require the longest transfer time. If there are multiple sub-
queries for the same tape they use the SORT agorithm proposed by Hillyer et al.
[45] to decide the order in which the sub-queries should be read (see Section 2.2.5).
The rationale behind the LtF algorithm is that while the data of the longest sub-
query is being read, there is time to switch the tapes on the other drives and read
the data corresponding to the shorter sub-queries. Through analytical analysis and
simulations they show that LtF provides short response times.

In our HMA we can represent the type of requests More et al. are concerned with
as multiple request units of one request, which all have the same delta deadline (see
Section 3.2 for details about the request of the HMA). The strategies of Promote-IT
that use the latest starting time as parameter to sort the jobs build similar schedules
to those of LtF for this type of requests, even if the length of the transfer is not the
scheduling parameter used by Promote-IT (see Section 6.2). Given a set of RSM
with the same deadline and different transfer times, the ones with longer transfer
times will have earlier latest-starting-times. Thus, these strategies of Promote-1T
will also schedule the RSM to begin earlier.

Other large database systems (e.g., RasDaMan [93] and the high-performance
digital library proposed by Grossman et al. [39]) rely on the scheduling of tertiary
storage resources provided by ahierarchical storage system (e.g., UniTree or SAM-
FS). The hierarchical storage systems, in general, cluster all requests for the same
RSM to minimize the expensive exchange operations. Sarawagi [97] argues against
relying on the scheduling provided by a hierarchical storage management system
and advocates for reorganizing the queries and scheduling the resources in a global
way so that the jukebox resources and the secondary storage cache can be used
efficiently.

Johnson [52] presents an analytical model of robotic storage libraries. His re-
guestsare for multiplefilesthat can be stored in different RSM. A request is satisfied
when every file has been staged to secondary storage. The requests are served First-
Come-First-Serve and the goal isto minimize the response time of the requests. The
jukeboxes that he can model have only one robot.

Johnson concludesthat adding drivesto the jukebox can improve the performance
of the jukebox, but after a threshold, adding drives does not significantly improve
the performance. Then the robot becomes the bottleneck of the jukebox.

Johnson et al. [54] anayze the performance of different tape drives. They con-
clude that high-throughput drives need to read large amounts of data per tape to be
effective.

26 Chapter 2. Background and Related Work

Hierarchical Storage Management

Tertiary storage plays an important role in supercomputing environment and scien-
tific computing. Essential to these environments is the capacity to deal with peta-
bytes of datathat must be easily accessible to geographically distributed scientists.
The storage hierarchy that stores the data must be transparent to the users, except
for the delays of accessing data in tertiary storage. Additionally, much of this data
can only be collected once (e.g., measurements of the atmosphere or stars) and it is
therefore important to provide safe backups mechanisms, as vaulting.

Therefore, much effort was put into devel oping hierarchical storage management
(HSM) systems. The IEEE Mass Storage System Reference Model [24] describes
the characteristics such systems should posses. Multiple HSM systems have been
developed, both conforming to the reference model and prior to it. Some examples
are the High Performance Storage System (HPSS) of the National Storage L abo-
ratory [106], and the Storage and Archive Manager File System (SAM-FS) of Fu-
jitsu [30]. Miller [72] and Setiaet a. [100] provide an overview of different HSM.

The openness of the reference model permitsto include specific real-time services
asfutureinterfaces[106]. However, no HSM so far supports real-time services. Our
HMA can be incorporated in the reference model as a Storage Server component.

There are also many extensionsto file systems, which incorporate tertiary storage.
Plan 9 [82] uses tertiary storage to backup data from the file system allowing the
users to access the state of the file system at any date in the past. Jaquith [75] uses
asimilar mechanism as Plan 9, but the system allows the user to decide which data
should be stored in tertiary storage in a per file basis. Highlight [57] uses the same
structurefor the data stored in secondary and tertiary storage, allowing, for example,
only some blocks of afileto bein tertiary storage.

2.2.5 Scheduling of a Single Medium

This subsection discusses scheduling mechanisms for accessing data stored in one
medium. We present first some techniques for scheduling the use of a magnetic
tape, which is the most used tertiary storage medium. We then present schedul-
ing of discs. Most of the work on disks has been done for hard disks, which are
non-removable. However, some of the techniques developed can be applied for re-
movable disks.

Tapes

Hillyer et al. [45] present and evaluate different scheduling algorithms to retrieve
data from tapes. Their work specially tackles the problem of randomly accessing

2.2 Scheduling of Tertiary Sorage 27

serpentine tapes. The problem they are concerned with is scheduling multiple re-
quests to retrieve data blocks from atape. The blocks to retrieve are stored in ran-
dom parts of the tape. The requests represent, for example, database management
workloads. The requests do not have deadlines.

A serpentine tape drive saves the data in a forward-backward manner. It records
atrack down the length of the tape and then reverses direction and shifts the head
sideways to record another track (see Section 4.1.2). A characteristic of serpentine
tapesisthat thelocate timeisnot asimplefunction of the distance in blocks between
the source and the destination, but a more complex function that depends on the
source and destination blocks [44]. Therefore, it is not enough to sort the requests
by offset and read the datain that order.

Scheduling the read of data from a helical tape is straightforward, because the
logical blocks correspond directly with physical tape positions. A helical tape uses
rotary head technology like that of avideo-cassette recorder. Therefore, the requests
just need to be sorted by block number and retrieved in that order.

Hillyer et a. analyze the following algorithms for serpentine tapes:
READ readsthe entire tape.
FIFO readsthe datain the order that the requests arrive at the system.
OPT computes the optimal path to read the data by finding a solution to
the asymmetrical travelling salesman problem. The computational
complexity of OPT is exponential.
SORT ordersthe requests by segment number.
SLTF (shortest locate timefirst) reads the datain a greedy manner, jump-
ing each time to the nearest request.
SCAN alternately shuttles up the tape, reading sectionsin forward tracks,
and then back down the tape, reading sections in reverse tracks.
This strategy tendsto switch tracks more often than sort, but makes
fewer passes up and down the length of the tape.
WEAVE is an approximation to SLTF that does not use the locate function.
LOSS isagreedy agorithm for the asymmetric travelling salesman prob-
lem [64].
The authors conclude that OPT can only be used for very small sets of up to 10
requests. If the number of requests is low or medium, LOSS behaves best. If the
number of requests is high the best is to read the full tape. The performance of
SLTF, WEAVE and SCAN is also good. As expected FIFO performs poorly.
Hillyer et al. [46] extended their study to a modified serpentine tape, which is
designed for fast random access. In this case the performance of the SCAN, SLTF
and OPT algorithms is nearly identical, because the locate function is ssimpler than
that of anormal serpentine tape.

28 Chapter 2. Background and Related Work

Disks

Scheduling the access to hard disks has been identified since long as an important
issue in improving the performance of computer systems. Disk schedulers can be
divided into non real-time and real-time.

Non real-time schedulers are not concerned with deadlines. These schedulers
assume that requests, which simply indicate a contiguous disk block, arrive con-
tinuously and are put in a queue of requests. The goal is to minimize the aver-
age response time of each request and to avoid starvation of the requests. In 1967
Denning [26] proposed two algorithms: shortest-seek-time-first (SSTF) and SCAN.
SSTF chooses the request in the queue that is closest to the current position of the
head. SSTF can lead to starvation and provides poor response times to requests
at the innermost and outermost tracks of the disk. SCAN reads the requested data
as it moves the head in one direction until all requests in that direction have been
processed. It then reverses the direction of the scan. Although this agorithm avoids
starvation, the middle tracks receive better service, because they are read more often
than the edges. There are numerous variations of the SCAN algorithm for non real-
time environments, e.g., FSCAN, C-SCAN, LOOK, and C-LOOK. VSCAN [32]
creates a continuum of algorithms with different levels of bias toward maintaining
the direction of the seek or changing it. Worthington [116] evaluates the different
algorithms.

Shastri et al. [101] adapt C-SCAN to read datafrom a CD-ROM in order to access
continuous-media. Tsao et a. [109] use the same approach and propose reordering
the blocks of the stream to serve multiple users. Tsao et a. consider the case of
accessing amovie stored in more than one CD-ROM. Their concernisto provide a
near-VoD server streaming the data directly from the CD-ROM drives. In both cases
adisk isloaded in adrive on a permanent basis.

Real-time disk schedulers read data for multiple streamsin a periodic way. Dur-
ing each period of astream they read arelatively small amount of data, which isjust
enough to fill a buffer. Their design is based on the assumption that the medium is
not removed, which is valid for hard disks, but not for optical disks in a jukebox.
However, the principles of SCAN-EDF [91] can be used for non-periodic sched-
ulers. In fact, the algorithm that we propose for building the medium schedules is
similar to SCAN-EDF, although it is aperiodic (see Section 6.6).

The requests that the SCAN-EDF algorithm deals with are periodic requests with
real-time deadlines and best-effort requests. The goal of SCAN-EDF isto be ableto
serve as many periodic requests as possible, while still providing a short response
time to the best-effort requests. SCAN-EDF assigns a high priority to the best-effort
requests and tries to read the data for them first. It schedules the requests using
the EDF algorithm [68] and uses a SCAN algorithm for requests with the same

2.2 Scheduling of Tertiary Storage 29

deadline. Reddy et al. [91] show that SCAN-EDF is a good combination of both
algorithms, and performswell in achieving both algorithm goals. It can serve ahigh
number of simultaneous periodic requests and provide short response times to best-
effort tasks.

2.3 Scheduling of Automated Storage/Retrieval
Systems

The scheduling mechanisms presented in this dissertation can also be used to sched-
ule aminiload automated storage/retrieval system (ASRS) in order to support just-
in-time (JIT) production. A miniload AS/RS [38] is a storage device used in facto-
ries and warehouses to store small items, similar to a tertiary-storage jukebox. In
factories they are used to store materials, intermediate products, spare parts, and
tools.

An AS/RS consists of a series of storage aisles that are serviced by one or more
storage/retrieval machines (SR). There is usually one S/R per aisle. An AS/RS has
one ore more pickup-and-deposit stations (P& D) where the materials are delivered
to and retrieved. In the case of a miniload AS/RS the materials are kept in bins or
drawers. In order to retrieve el ements from the AS/RS, a bin is brought by the S/R
to a P& D where the desired elements are taken from the bin. The S/R then returns
the bin to its location. For example, the bins may contain screws, nuts and bolts,
where the elements of each bin have the same characteristics—size, material, etc. A
request for 10 bolts of type X triggers the S/R to bring the appropriate binto a P& D
where a human operator extracts 10 bolts from the bin and S/R returns the bin with
the remaining contents to itslocation in the aisle.

The goal of just-in-time production is to produce small lot-sizes and respond
promptly to new demandsfrom the users. Therefore, it isimportant that the different
components are available in time for the production, so that once the production
startsit is not interrupted and the amount of work-in-process is kept low.

The requests that we propose in this dissertation can be used to define the time
at which the different components are needed for production. The scheduler for the
storage system determines the earliest time at which the products can be available
while respecting the timeline defined by the request. It also guarantees that the com-
ponents are available at the pickup stationsin time.

The hardware model for the jukebox can be easily used for an AS/RS. Only the
details for computing the time to move the robots and pick up the components need
to change. As a matter of fact, many features of the hardware model are more
frequent on this type of storage than on tertiary-storage jukeboxes, e.g., multiple

30 Chapter 2. Background and Related Work

robots, limited scope and different robot functionality. Some big semi-automated
tape jukeboxes use a miniload to handle the storage and retrieval of the tapes, e.g.,
Odetics Storage Subsystem [89].

However, the normal utilization pattern of a miniload AS/RS gives raise to dif-
ferent scheduling problems than those present in jukeboxes. Mahajan et al. [70]
assume that the time needed to retrieve elements from the bins is short compared
to the time needed to move the SR machine between locations. Therefore, itisim-
portant to pair unload and loads correctly in order to minimize the average response
time of requests. The pairing of unload and loads is called dual-command cycles.
Mahgjan et al. propose using a nearest-neighbour retrieving sequence to pair the
operations in order to minimize the distance travelled between finishing an unload
operation and beginning aload operation. They show that their approach is5 to 15%
better than FCFS. In their hardware model the P& D are located at the same place
and the picker can be seen as one machine with an outbound buffer of one unit.

The picker may also have a larger buffer. Park et a. [79] analyze the optimal
size of the inbound and outbound buffers to maximize the throughput of a miniload
AS/RS. In our hardware and scheduling-problem model we can model the buffers
as drives. Instead of viewing aload as bringing a bin from a shelf to the beginning
of the queue of bins that need to be processed and unloading it from the end of the
queue to process, as done by Park, we handle the buffersin acyclic way.

To the best of our knowledge no work has been done to schedule a miniload
AS/RS in order to meet real-time deadlines. Given the strong similarities between
the two applications, we will only refer to the production application when the dif-
ference is important or the solution is more applicable in this environment than in
the HMA.

2.4 Scheduling in Logistics Applications

Our scheduling problem has some common features with the problems from the
family of the vehicle routing problem (VRP). However, there are important differ-
ences that prevent the solutions to be directly comparable. This section presents
the types of VRP that are most closely related to our scheduling problem and
presents some VRP-like problems that we use to model sub-problems of our juke-
box-scheduling problem.

In the vehicle routing problem with time windows (VRPTW) anumber of identical
vehicles must be routed to and from a depot to cover a given set of customers,
each of whom has a specified time interval indicating when they are available for
service. Each customer also has a known demand, and a vehicle may only serve the
customer on aroute if the total demand does not exceed the capacity of the vehicle.

2.4 Scheduling in Logistics Applications 31

An extension of this problem deals with non-identical vehicles [40, 58]. There are
numerous exact and heuristic solutions to the VRPTW. Larsen [60] provides an
overview of different solutions.

An interesting specia case of the VRPTW is the asymmetric multi-travelling
salesmen problems with time windows (m-TSPTW), which ignores the capacity of
the vehicles. However, al the salesmen are identical, so the extension for non-
identical vehiclesislost. The m-TSPTW is ageneralization of the asymmetric trav-
elling salesman problem with time windows (TSPTW), which isin turn a general-
ization of the well known travelling salesman problem. loannou et al. [49] show
the necessity to use different algorithms to solve the m-TSPTW than to solve the
VRPTW, even if the former is a specia case of the | atter.

We model reading data from one RSM as a TSPTW (see Section 5.2.4). In the
dedicated robots model presented in Section 5.7 we propose modelling a jukebox
with one drive as a TSPTW. Furthermore, we model ajukebox with multiple drives
as an extension of the m-TSPTW with non-identical salesmen and additional re-
source constraints. However, we show that even after making these extensions to
the m-TSPTW, such amodel can only be used for jukeboxes with dedicated robots.

The inventory routing problem (IRP) is interesting because it deals with alonger
time horizon than the vehicle routing problem. The customers have a consumption
rate and the delivery company decides how much to deliver to which customer each
day, so that the customers do not run out of product. The IRP is concerned with the
repeated distribution of a single product from a single facility to a set of customers
over along planning horizon. The customer consumption is not necessarily periodic,
because it may stop during the weekends. Therefore, thisis a good application for
the type of flexible requests that we propose.

The solution to the IRP presented by Campbell et al. [6] has important pointsin
common with our scheduler. On the one hand, it is similar to the approach we use
to represent our scheduling problem as the optimal model (see Chapter 5) in the
sense that it first clusters the customers and then it computes the schedules for each
cluster. On the other hand, Campbell et al. tries to use full trucks and delivering to
customers earlier than necessary. In Promote-IT we read as much as possible from
an RSM onceit isloaded in adrive (equivalent to full trucks) and dispatch as early
as possible. However, in the IRP the customers have buffer limitations that do not
always permit to deliver early.

2.5 Summary

This chapter presented different approaches to schedul e tertiary storage. We catego-
rized the schedulers according to the type of requests they can handle. The sched-

32 Chapter 2. Background and Related Work

ulers for complex requests have the potential to handle complex real-time requests
as the ones used in our HMA. In this case the data can be stored in multiple RSM,
can be for continuous and discrete data and can be combined in any possible way.
In Chapter 8 we present our extensions to the schedulers presented—the aggres-
sive and conservative strategies of Lau et al., and the Fully-Staged-Before-Starting
scheduler of Federighi—in order use them in our HMA.

The schedulers for smple requests for continuous-media can only provide real-
time access to data that is stored in one RSM. We presented some schedulers that
attempt to provide real-time guarantees to access continuous-media, but due to
resource-contention problems they cannot guarantee meeting the deadlines. The
discussion about schedulers for requests without real-time deadlines showed the
benefits of reading all the requested data of an RSM once the RSM is loaded in a
drive. We also discussed shortly the scheduling of single media as tapes and disks.

Additionally, we discussed how the concepts presented in this dissertation can
be applied to schedule an automated storage/retrieval system. Using the type of re-
quests and scheduling mechanisms proposed for an HMA, such astorage system can
be used in ajust-in-time production environment. Finally, we discussed the relation
between our scheduling problem and scheduling problems in logistic applications.

25 Summary 33

34

Chapter 2. Background and Related Work

Chapter 3

Hierarchical Multimedia Archive

The hierarchical multimedia archive (HMA) is a flexible storage system that can
serve complex requests for the real-time delivery of any combination of mediafiles.
Such requests can originate from any system that needs to combine multiple media
files into a continuous presentation. A request can consist of multiple streams and
non-streamed data that are synchronized sequentially or concurrently in arbitrary
patterns.

As described in Section 1.2, the HMA acts as a real-time file system and the
network servers provide specific services to remote users. The remote users access
the services through local client applications, e.g., a video player, a multimedia
presentation tool, a database query interface.

Following the classification presented by Gemmel et a. [33], the HMA s file-
systemoriented, becauseit offersto its users (the network servers) simple operations
such as open, read, close. The network servers may in turn offer stream-oriented
services to their clients, offering operations such as play, pause, resume. Almeroth
et al. [4] discuss different types of paradigms that can be used to provide access to
video. They advocate limiting the VCR capability of the servers, and putting the
burden of interaction on the client applications. This can be achieved by having the
client applications buffer the data. This approach is used by time-shifted TV.

We first present some usage scenarios for the HMA. We then define formally
the user requests. We present the system architecture, with special emphasis on the
cache manager, which is not further described in the rest of the dissertation. We
present the generic schedule builder that is the basis of al the heuristic jukebox-
schedulers. Finally, we briefly discuss how to add new data into the jukebox.

3.1 Usage Scenarios

We present here some usage scenarios of the HMA. In the first scenario a user in
the local network decides to watch a movie with English audio and Dutch subti-
tles. The movie should start ASAP. The client-application sends the request to the

35

VoD server. The server consults the archive directory to map the movie to the cor-
responding files and to enquire some other details as format and bandwidth. Let us
assume that the video for the movie is stored in three different disks. Each disk con-
tains also the audio and subtitles belonging to the respective part of the video. The
server creates arequest with request units corresponding to the video, the audio and
subtitles of each part of the movie. The HMA schedules the request and immedi-
ately replies that the user can start consuming the data in 25 seconds. To fill in the
time, the server streams a 30-second long advertisement and then starts streaming
the movie.

In the second scenario, auser requests the personal MTV server to play clipsfrom
a play list in a random order ASAP. The play list involves songs from different
albums stored in different RSM. The server consults the HMA about the songs
that could be played immediately because they are already in cache. It then builds
a request in which the first song is already in cache, so that the request can be
served faster. This approach is similar to the opportunistic scheduling proposed
by Aksoy et al. [2] for broadcasting readily available data first, and the Sorage
Latency Estimation Descriptors (SLEDs) of van Meter et al. [111]. This server can
also be used by avideo-clip broadcaster with multiple channelslike M TV, where the
viewers make requests for video clips in the form of votes. Periodically, e.g., every
half hour, the broadcaster analyses the votes for each channel and makes requests
to the HMA for the video clips that should be played in the next half hour.

In the last scenario, a multimedia-database server uses the HMA to manage the
contents of the database. The front end of the database server provides multimedia
searches, for which an on-line index is used. As a result of a search the server
requests the HMA the contents the user wants to view. The order in which the
datais available is not relevant in this case, only that it should be available ASAP.
The client application shows the results in different colours, indicating the results
aready available and those that still need to be made available by the HMA. The
user may start viewing the results as they become available.

3.2 User Request

A request ri, which a user issues to the system, consist of a deadline and a set of
l; request units u; for individual files (or part of files). The request can represent
any kind of static temporal relation between the request units. This type of request
is called absolute expressions [56], because they represent time synchronization
information as the order in which the events take place on an absolute time axis.
Formally we express the user request structure in the following way:

ri = (di, asap,, maxConf, {Uiz, Uiz, . . . , Ui, })

36 Chapter 3. Hierarchical Multimedia Archive

uj = (Adyj, my, 0, S, byj)

The deadline d; of the request is the time by which the user must have guaranteed
access to the data. The flag asap; indicates if the request should be scheduled as
soon as possible. The user may specify no deadline (d; = o) if the only restriction
isthat the request should be scheduled ASAP.

The maximum confirmation time maxConf; is the time the user iswilling to wait
in order to get a confirmation from the system, which indicates if the request was
accepted or rejected. The system must provide a confirmation before making the
data available, so maxConf; < d.

The parameters of the request units are

m; RSM where the data of the request unit is stored
0jj offset in the RSM

Sj size of the data requested

bij bandwidth with which the user wants to access the data—if b; = O then we
say that u;j represents a block, otherwise it represents a stream

Ad;; relative deadline of the request unit—this is the time by which the data of
the request unit should be available for the user to access it, relative to the
starting time of the request Formally we define a{j‘ as the deadline of the nth
byte in Uij -

~“n _ Sti + Aaij if bij =0
T { st + Aaij + n/bij otherwise

The confirmation to the user indicates if the request is accepted or rejected. If the
request is accepted, the confirmation contains the starting time s that the HMA
assigned to the request. The starting time must be less or equal to the deadline of the
request (st < d). If the request is ASAP, the system triesto find the earliest value of
&t that will allow it to accept the request. The system must provide a confirmation
before maxConf;.

Therequest and its confirmation are the contract between the user and the system.
The user can start consuming the data at the assigned starting time with the system’s
guarantee that the flow of datawill not be interrupted.

The response time of a request rt; is the time that elapses between the arrival
of the request and the assigned starting time. The confirmation time ct; is the time
between the arrival of the request and the time at which the user gets the confirma-
tion. When evaluating the schedulers we will also refer to the computation time of

3.2 User Request 37

arequest, which is the CPU time used to compute a feasible schedule that permits
to incorporate the request into the system. The computation time includes also the
failed attempts to build such a schedule.

The users can also request files without specifying the offset and number of bytes,
or for an offset in a file and define the number of bytes to read. However, al these
requests are finally trandlated to the structure presented above.

An important design decision is to let the network servers decide how to build a
request in order to achieve a good degree of pipelining. In the VoD scenario pre-
sented in the previous section, the VoD server realy chops each file containing
video, audio and subtitles into request units corresponding to approximately ten
minutes of presentation. Generally, the presentation can start as soon as thefirst ten
minutes worth of data are buffered. An alternative design would be to let the HMA
do the pipelining and decide when to give access to the data. In theory, the HMA
can compute the optimal size of the first request units that allow the request to start
earlier, because the HMA knows the details of the jukebox hardware. However,
finding an optimal solution for the scheduling problem is aready NP-hard with-
out asking for that additional optimality criterion. Therefore, finding the perfect
request-unit sizes is virtually impossible. Additionally, our approach of letting the
network servers decide on the structure of the request makes modelling the schedul -
ing problem simpler (see Section 3.5), and simplifies the evaluation of the different
schedulers.

Another design decisionis, not to provide an explicit OR semantic in the requests.
Such a semantic should be useful to express alternatives in the timeline. However,
the same results can be achieved by submitting multiple requests. In the database
example of the previous section, the database server builds arequest for each query
result. It then sends all the requests to the HMA in the order resulting from the hit
confidence of the results,

3.3 System Architecture

This section presents the architecture of the HMA and gives an overview of the
main components of the system. The components are discussed in the following
chapters. Figure 3.1 shows the system architecture. The data of the archive can be
stored in multiple jukeboxes. Each jukebox has its own scheduler and controller,
thus providing scalability to the system, because the complexity of the scheduler
does not increase by incorporating more jukeboxes. The cache manager may be
physicaly distributed, as proposed by Brubeck et al. [19], to avoid becoming a
bottleneck. The directory is a database that contains metadata about the contents of
the jukeboxes and can easily be distributed or replicated.

38 Chapter 3. Hierarchical Multimedia Archive

< Hierarchical Multimedia Archive API >

Cache Manager i Directory
Jukebox
Jukebox Controller

Scheduler

Figure 3.1: Architecture of the Hierarchical Multimedia Archive. Thethick linesrepresent
broadband connectionsfor fast datatransfer, and the thin lines represent service requests and
replies.

When anew request arrives at the system, the cache manager filters out the parts
of the request that refer to data that is already in the cache or scheduled for staging.
It then consults the directory to find out in which jukebox(es) the remaining datais
stored and sends the appropriate requests to the corresponding jukebox schedulers.

Figure 3.2 shows the jukebox-schedul er architecture. An important feature of the
architectureisthe separation of the schedule building and dispatching functionality.
We separate both functionalities because their goals are different. Although sepa-
rating schedule building and dispatching seems a natural design decision, it has not
been used in any other jukebox scheduler. In this dissertation we show that this sep-
aration leads to a better performance of the jukebox scheduler and simplifies the
development of new schedulers.

The schedule builder® schedules the filtered requests on-line, recomputing the
schedule every time arequest arrives. It generates anew schedul e to replace the cur-
rently active schedule. The dispatcher uses the active schedule to send commands
to the jukebox controller to move RSM and stage data into secondary storage. Thus,
basically, the goal of the schedule builder isto find a feasible schedule that permits
to buffer al the requested data before its deadline, while the goa of the dispatcher

1 We will normally refer to the ‘schedule builder’ simply as the ‘scheduler’ and will use the term
schedule builder when thereis aneed to distinguish it from the dispatcher. We also refer to ‘ sched-
ule building’ ssimply as ‘ scheduling’.

3.3 System Architecture 39

Cache Manager > N
Request Confirmation
g (Starting Time)
: Jukebox
Unscheduled Schedul
Requests cheduler
Schedule Active :
) Dispatcher
Builder / schedule
S |
Operation HW state &
duration capability [, =
Jukebox [HW charact| Jukebox
Model Controller

Figure 3.2: Architecture of the Jukebox Scheduler. The thick lines represent broadband
connections for fast data transfer, the thin lines represent service requests and replies, and
the dashed lines represent commands.

is to dispatch in time. Our functionality separation goes a step further in order to
increase the efficiency of the system.

We make the dispatcher responsible for utilizing the jukebox resourcesin an ef-
ficient manner. We use an early dispatcher that dispatches the tasks to the jukebox
controller asearly as possible. The dispatcher may modify the schedules built by the
scheduler as long as no task is delayed and the sequence and resource constraints
are respected. By assigning this responsibility to the dispatcher, we reduce the job
of the scheduler to finding feasible schedules, without having to optimize the use of
the resources.

Additionally, using an early dispatcher allows the scheduler to use safe worst-
case operation times, knowing that the dispatcher will use the idle times resulting
from overestimating the operation timesto dispatch other tasks earlier. However, not
even an early dispatcher can compensate for using very bad estimates. Therefore, it
is still important to use an accurate jukebox model and to build the schedules with
the estimates of each operation, and not a generic worst-case operation time.

The combination between Back-to-Front scheduling and early dispatcher used
in Promote-IT shows the efficiency of this functional separation. In this case the

40 Chapter 3. Hierarchical Multimedia Archive

schedule builder builds schedules with *holes’ (idle times), and the dispatcher uses
this ‘holes’ to dispatch tasks early.

However, the early dispatcher cannot solve all deficiencies of a schedule builder.
When the scheduler is based on an inappropriate scheduling-problem model such as
aperiodic model, the dispatcher is not ableto eliminate all the unnecessary switches
in the schedule.

As shown in Figure 3.2, the schedule builder uses the information provided by
the jukebox model and jukebox controller to determine the parameters of the tasks
to schedule. The hardware model provides information about the duration of the
hardware operations and the capabilities of the different devices in the jukebox.
The jukebox controller provides a consistent view of the state of the devices in the
jukebox, and guarantees that all the data in the jukebox can be read with at least
one drive. Additionally, the jukebox controller acts as a schedule verifier, because
it only performs valid operations (see Section 8.5). We present the jukebox model
and the jukebox controller in detail in the next chapter.

3.4 Cache Manager

The cache manager provides|ogical administration of the storage spacein the cache.
The cache manager distinguishes between two types of cache contents: buffered
data and cached data. Buffered data belong to one or more requests in the system.
The data is considered buffered as long as there are requests that own it. When no
reguest owns the data it becomes cached data. The space used by cached data can
be released whenever the space is needed to buffer data for an active request. The
cache manager can use different administration policies, although a simple least
recently used (LRU) policy performswell.

The storage capacity and bandwidth of the secondary storage must be big enough
not to become a bottleneck in the system. The cache manager should be able to
store between 10% and 20% of the data in the jukebox to achieve asystem in which
most of the requested data can be served directly from secondary storage. We derive
these numbers from assuming that the datais requested following a Zipf-like distri-
bution [117], because this type of distribution has been detected in most data-access
systems. Chervenak [22] shows that the requests for multimedia databases and VoD
follow a Zipf distribution, while multiple studies [3, 18] show that web access also
follow a Zipf-like distribution.

To reach 10% cache capacity, generally more than one hard disk will be required,
e.g., an ASM jukebox with 1744 DV D-ROM requires 1482 GB. This capacity is at
least one order of magnitude bigger than the capacities offered by current hard disks.
An array of disks can be used, or multiple independent disks, or distributed disks

3.4 Cache Manager 41

as proposed by Brubeck et al. [19]. Taking as parameter current optical-disk and
hard-disk technology, the bandwidth is not a source of bottlenecks. Managing the
secondary storage devices and providing real-time access from secondary storageis
out of the scope of thisresearch. We refer to the work of Bosch [14] for adiscussion
on thistopic.

3.5 Generic Schedule Builder

The generic schedule builder provides the structure and basic functionality present
in al the heuristic schedulers presented in the dissertation. It finds an appropriate
starting time for each incoming request, so that the request can be incorporated to
the schedule. The new request and the previously accepted requests have to meet
their deadlines. The specific scheduling problem model IT and the heuristic to de-
termine when to stop searching for a solution depends on the scheduling algorithm
used.

The scheduler views arequest as a set of request units with fixed deadlinesin the
following way: 3

uj = (cij, my, 0y, S)
We assume that the user can start consuming the data of a request unit only once
all its data has been buffered, so that we can compute the deadline for each request
unit in a request as d; = st + Ad;. Therefore, it is important that the network
servers request big continuous-media files as multiple request units as discussed in
Section 3.2.

The bandwidth does no longer appear in the definition of uj;, nor isit used in com-
puting ai,-. However, we can use the bandwidth to divide the original request units
into smaller request units or join them into bigger request units. We use this tech-
nique in the periodic quantum model (see Section 5.6). The bandwidth is used also
by the secondary-storage file system to guarantee real-time access from secondary
storage [14].

Let us say that at time to request ry arrives at ajukebox scheduler. At time t, the
jukebox scheduler has a set U of request units from previous requests that have not
yet been dispatched to the jukebox:

U C{uy [x<ky<ly (3.1

The goal of the scheduler is to find a feasible schedule for the new set U’ that
includes the request units Uy corresponding to the incoming request ry:

U =UU Uy, U, ..., Uy } (3.2

42 Chapter 3. Hierarchical Multimedia Archive

The starting time of the request must not be later than its deadline, so sty < dy. If
the request is ASAP, the scheduler assigns the request the earliest possible starting
time st that will alow it to be incorporated into the system. Thus, the scheduler
must find the minimum starting time sty that makes U’ schedulable. The scheduler
tries different candidate starting times st; and selects the earliest feasible st;.. If the
regquest is not ASAP, the scheduler assigns it the starting time corresponding to its
deadline. If the deadline of the request cannot be met, then the scheduler puts the
request in the list of unscheduled requests until it can schedule it or maxConf; is
reached and the request is rejected.

The scheduler uses an iterative algorithm to schedule a request. The algorithm
keeps a list of candidate starting times that it already analyzed and the schedules
produced for them. The structure of the algorithm is the following:

1. Generate a candidate starting time sty and update the deadline of each request
unit so that dy = st} + Ady. The algorithm uses a heuristic guessST to gener-
ate the candidate starting times. This heuristic also determines when to stop
searching.

2. Incorporate the request units of ry into U’ = U U {Ug, Uy, . .., U }.
3. Model U’ asaninstance | of a scheduling problem I1.

4. Try to compute avalid resource assignment for I. If the scheduling algorithm
succeeds, the output of this step is a feasible schedule S otherwise S = .
The pair (S, sty) isincorporated into the list of analyzed solutions.

5. Repeat from step 1 until the stop criteria of the heuristic guessST is fulfilled
for the list of candidates.

6. Select the best solution. The best solution is the earliest candidate starting
time for which step 4 could compute afeasible schedule (min{st; | S # @}). If
there is no such stf, the request ry is placed in the list of unscheduled requests
to be scheduled at a later time. Otherwise the scheduler confirms the starting
time sty to the user and replaces the active schedule with the new feasible
schedule.

Chapter 5 presents different ways of modelling 2’ into ascheduling problemI1. The
most important of those models is the minimum switching model because it alows
the representation of any kind of jukebox architecture and the creation of sched-
ules that use the resources efficiently. Promote-IT is an efficient heuristic jukebox
scheduler that uses the minimum switching model.

3.5 Generic Schedule Builder 43

3.6 Storing New Data in a Jukebox

To store data in tertiary storage an extension to the HMA is needed that we do not
present in this dissertation. We left the ‘writing functionality’ outside the research
scope, because it makes the scheduling-problem models more complex, but does
not enrich them in any valuable way.

There aretwo waysin which new data can be stored in the jukebox: (1) by writing
datato awritable RSM that is already stored in the jukebox, or (2) by incorporating
an already written RSM into the jukebox through its mailbox.

To handle the first case, the scheduler needs to load the RSM from a shelf into a
drive, write the data to the RSM (by copying it from secondary storage) and move
the RSM back to its shelf. The duration of the write task depends on the writing
speed of the drive. Its computation needs to be incorporated to the hardware model
as an extension. The load and unload times will most probably also be different
(e.g., the time to recognize an ‘empty’ CD-R is different that the time needed to
recognize a‘burnt’ CD-R).

The scheduler must guarantee that the writing is not interrupted. When using
the aperiodic schedulers, we only need to represent the writing as one request unit.
When using an aperiodic scheduler (e.g., JEQS), the scheduler must assign the re-
sulting task a period of 1, so that the RSM is not unloaded from the drive until the
writing task finishes.

To handle the second case, the only difference with a normal read is that the
source of theload is different from the destination of the unload, and that the data to
read isthe directory of the RSM and not afile. The operationsto perform areloading
the RSM from the mailbox into a drive, extracting the directory structure from the
RSM into the directory database, and moving the RSM into an empty shelf. The
model should include the estimated time to read the directory of an RSM. Given
that the RSM is not yet known in the system, it should use the worst-case time.

3.7 Summary

This chapter presented the architecture of the HMA, with special emphasis on the
jukebox scheduler. 1t described a generic schedule builder, whichispresentin al the
heuristic scheduling algorithms presented in the dissertation. It defined the structure
of the requests and the interface between the users and the system. It also presented
some usage scenarios showing how the HMA acts as real-time file-system, while
the network servers may provide stream-oriented services.

44 Chapter 3. Hierarchical Multimedia Archive

Chapter 4

Tertiary-Storage Hardware

In order to schedule the resources, we need to predict how long the operations with
these resources will take. We predict operation times with a hardware model, which
we aso use to time the jukebox simulator. The scheduler basically needs to know
the time required to load an RSM in a drive, read data from the RSM and unload
it. Computing these times is not straightforward. Many factors are important: the
type of RSM, the drive, the jukebox robotics, the number of robots in the jukebox
and the location of the shelves and drives in the jukebox. Our hardware model has
separate sub-models for the RSM, the drives, the robots and the jukebox. Together,
the sub-models can describe any type of jukebox architecture.

To model a jukebox, we must understand how it behaves. Therefore, in the next
section we give an overview of jukebox technology. Our focusis mainly on optical
and magneto-optical jukeboxes, because, in contrast to magnetic tapes, these types
of media allow easier random access to the data. We then present the hardware
model. Finally, we briefly describe the jukebox controller and show how it uses the
jukebox model.

4.1 Jukebox Technology

Tertiary-storage jukeboxes are composed of the following schedul able resources:

Removable Storage Media (RSM) where the data is stored. The RSM are stored
in shelves, also called dots.

Drives to read the data from the RSM. The data from the drives can be transferred
directly to secondary storage or to memory through a high-bandwidth con-
nection (see [69] for an overview of storage interfaces). Although Figure 4.1
shows all the drives using the same bus, they could be attached to different
buses.

Robots to move the RSM from the shelves to the drives and vice-versa.

45

———a———I——— i y 4
———I———I———I———I———1 —
i] L
——————I———i——————]
]
Bl [e [[
i
[A
]
—————————] —1
] .
—

Shelves Robot Drives

Figure 4.1: Architecture of a generic jukebox with four drives and one robot.

There are jukeboxes for different types of RSM. Older jukeboxes used mainly
magnetic tapes. Newer jukeboxes use optical disks—CD-ROM, DVD-ROM, DV D-
RAM—and magneto-optical disks. We are mainly concerned with jukeboxes for
optical and magneto-optical disks, because (@) this is the type of hardware that we
have available in our laboratory, (b) disks are better suited for random access than
tapes, and (c) disks can be loaded and unloaded faster than tapes. Given that the
requests for the HMA may include request units for small files or parts of files, it
is important that we are able to access the data in an RSM in a random manner.
Additionally, the faster we are able to switch RSM the better.

Most optical jukeboxes can store several types of optical disks at the same time
and read all of them with the same drives. Most optical drives can read ‘earlier’
disk technologies, e.g., most DVD-ROM drives can read CD-ROM, and the DV D-
RAM drives can read both CD-ROM and DV D-ROM. However, the performance of
adrive differs among different types of disks. For example, the transfer and access
speed of DVD-ROM drives is different when reading DVD-ROM and CD-ROM.
Additionally, there may even be a difference when reading CD-ROM with different
reflective layers and dyes.

A jukebox can be equipped with different drive types, leading to configurations
in which some RSM can only be read by a subset of the drives. For example, in
a jukebox with two DVD-ROM drives and two DVD-RAM drives the DVD-ROM
stored in the jukebox can be read with any of the drives, but the DVD-RAM can
only be read with the DVD-RAM drives. Such a situation can arise, for example,
from gradual upgrades of the jukebox hardware.

46 Chapter 4. Tertiary-Storage Hardware

The number of shelvesis between two and three orders of magnitude bigger than
the number of drives. The time needed to switch the RSM loaded in a drive isin
the order of seconds. In optical jukeboxes, the average switch timeisin the order of
tens of seconds, while in tape jukeboxes it can reach hundreds of seconds.

Table 4.1 provides some characteristics of some jukeboxes available at present in
the market. The datawas taken from the product specifications of the manufacturers
[7, 27,42, 55,59, 84, 102, 104, 105].

The switch time reported by the manufacturers does not take into account the
time needed to spin down the RSM in the drive, gect it, close the drive once the
new RSM isloaded, spin up, and recognize the RSM. However, the time needed to
perform these activities can not be ignored. For example, most DVD-ROM drives
available at present need approximately 12 seconds to close the drive and recognize
the disk.

Some jukeboxes have a robot with a dual-picker, which can carry two disks at
the sametime. Therobot can unload adrive and immediately |oad a new disk. Most
of the optical jukeboxes in the table are capable of using double-sided DV D-ROM
and DVD-RAM by turning them over. The turning is generally done while moving
the disk between the slot and the drive and does not add a considerable extra delay.
However, in order to read both sides of adisk, the disk needs to be unloaded, turned
over by the robot and loaded again. In Chapter 5 we discuss the implications of not
being able to read both sides of a disk without a robot intervention.

The way in which the shelves and drives are placed in the jukebox varies con-
siderably between the different models. In some jukeboxes, the shelves and drives
are placed as in a book shelf or matrix, e.g., ASM jukeboxes. In others, they are
placed in a concentric fashion around the robotic arm, e.g., the DAX jukeboxes.
Some jukeboxes are built like big PC-towers and the shelves and drives are in two
columns at the front and back of the tower, e.g., the JVC jukeboxes. The robot
mechanism also differs between different models, mainly dependent on the way the
shelves and drives are placed. The drives are generally at the bottom of the jukebox.

In some jukeboxes, some space can be used either to put drives or dots, and
therefore increasing the number of drives reduces the number of shelves. In the
case of the NSM series, each additional drive reduces the number of shelves by
15. In the case of the ASM jukeboxes, the drives can only be added in fixed-sized
blocks. A block with 6 drives reduces the number of shelves by 24. In the case of the
JV C jukeboxes, the drives can be added in blocks of 3 drives replacing 50 shelves.
The Pioneer jukebox can be configured with any even number of drives between 2
and 16 drives. Each pair of drives reduces the number of RSM by 50.

In most jukeboxes, the RSM are stored in removable magazines. The magazines
vary in size from 10 to 50 disks, depending on the jukebox. Most jukeboxes provide
the possibility to import and export one RSM through a mailbox as well.

4.1 Jukebox Technology 47

Switch
Model Producer | RSM Type Robots | Shelves Drives | Time
(sec.)
CD-ROM 1600 48
DVD 1400 ASM DVD-ROM 1@ 1600 24 6-12
DVD-RAM 1720 18
1744 12
CD-ROM 600 6
M C-8600U C DVD-ROM 1 550 g | ag.10
DVD-RAM 500 7
CD-ROM 605 1
NSM6000 DISC DVD-ROM 1 515 7| @&9.6
DVD-RAM 410 14
720 2
, CD-ROM
DRM-7000 Pi 10 <9
o1 pvb-ROM 570 8
370 16
CD-ROM 2
D480 Plasmon DVD-ROM 1@ 440 4| ag.4
DVD-RAM 6
CD-ROM
smartDAX700 | DAX DVD-ROM 10) 7200 4| avg.7
DVD-RAM
436 | 2-16
DVD-RAM
SA-1600 Kubota (in cartri dge) 1 904 2-32 6.15-10
1840 | 2-64
CD-ROM
AV-1450 Asaca DVD-ROM 1® | 1100-1450 | 1-24 | avg. 35
DVD-RAM
Orion D1050 | Disc Magneto Optical 1@ | 910-1050 | 4-32 N/A
6
G638 Plasmon | Magneto Optical 1@ 638 10 | avg.6.4
12
Hewlett- 4
2200mx Packard Magneto Optical 1 238 6 | &g.65
10

Table 4.1: Hardware specification of some commercial jukeboxes. Notation: (a) The robot
may use a dual picker. (b) The robot cannot handle double-sided RSM. (c) The jukebox
does not provide removable magazines.

48 Chapter 4. Tertiary-Storage Hardware

4.1.1 Optical and Magneto-optical Disks

The data on an optical disk is stored using indentations on a polycarbonate plastic
layer and read using a very low power laser. The indentations are called pits, the
areas around them are called lands. The pits and lands do not correspond directly to
1'sand 0'sto avoid having very small artefacts on the disk, which may produce read
errors. Instead amodul ation scheme is used that encodes abyte of data (8 bits) into a
larger number of channel bits, allowing the pits and lands to be longer. The original
scheme, called eight-to-fourteen (EFM), encodes eight bits into fourteen channel
bits. Additionally, three extra channel bits are added to the fourteen to ensure that
the pit length is never shorter than three or longer than eleven channel bits. DVD-
ROM uses an eight-to-sixteen modulation scheme.

The basic CD (compact disc) is 120mm in diameter and a 1.2 mm thick sand-
wich of three coatings. a back layer of clear polycarbonate plastic, a thin sheet of
aluminium and a lacquer coating to protect the disk from external scratches and
dust. There are multiple extensions of this simple ‘disk definition’. The two main
extension are CD-ROM (compact disc read only memory) and DV D (digital versa-
tile disc), with their write-once and rewrite versions. The potential successors of the
DVD offer storage capacities between 20 and 27 GB per layer. The higher storage
capacity is primarily the result of using blue laser [47].

The datais stored in a spiral track circling from the inside to the outside of the
disk. With each rotation the radius of the spiral grows with a constant amount called
track pitch. Figure 4.2 shows a representation of the spiral and atrack in the disk.

A player reads information from the disk’s spiral track of pits and lands, starting
from the centre and moving to the outer edge. It fires a laser and interprets the
reflected light. Light reflected from a pit is 180 degrees out of phase with the light
from the land. The differencesin intensity are measured by photo-electric cells and
converted into electrical pulses.

A magneto-optical disk (MO) is a read/write disk that combines magnetic and
optical technologies. It uses laser light to enable a relatively large magnetic write
head at alarge flying height to write small magnetic domains.

The magnetic coating used on MO media is designed to be extremely stable at
room temperature, making the data unchangeable unless the disk is heated to above
atemperature level called the Curie point (approx. 200°C). Once heated, the mag-
netic particles can easily have their direction changed by a magnetic field that is
generated by the read/write head. Information is read using a less powerful laser,
making use of the Kerr Effect, where the polarity of the reflected light is altered
depending on the orientation of the magnetic particles.

A DVD-RAM uses phase-change recording technology. The layer that records
the data has the property to change between amorphous and crystalline states by

4.1 Jukebox Technology 49

Figure 4.2: Spiral of an optical disk.

controlled heating and cooling [95]. The medium is in polycrystalline state during
reading. Recording is done by rapidly heating the material with alaser and letting it
cool quickly to the amorphous state. To revert to the polycrystalline state, the alloy
is heated to atemperature just above its crystallization point.*

The type of media determines the size of the pits and the track pitch. The smaller
these values are the more data can be stored on the same surface. Figure 4.3 shows
the surface of a CD-ROM and a DVD-ROM. The pits in a CD-ROM are 0.5um
wide, between 0.83umand 3umlong and 0.15 um deep, and the pitchis 1.6 um. A
DVD-ROM can store more data and, thus, the sizes are smaller. The pitsin aDVD-
ROM have a minimum length of 0.4 um and the pitch is 0.74 um. These values are
even smaller for Blu-ray Discs.

The officia storage capacity of a CD-ROM is 650 MB, equivalent to 74 minutes
of audio. However, through over-burning and reducing the track pitch, higher capac-
ities can be obtained. Currently it is common to use 700 MB (80 minutes), 800 MB
(90 minutes) and 870 MB (99 minutes) disks. There are other ways of increasing
the capacity of CDs. The double-density CD-R/RW, for example, has a capacity
of 1300 MB. In this case the track pitch is 1.1 um and the minimum pit length is
0.623 um.

1 Except when explicitly mentioned we treat DVD-RAM asanormal part of the DVD-ROM family.

50 Chapter 4. Tertiary-Storage Hardware

Figure 4.3: Surface of aCD-ROM (left) and a DV D-ROM (right).

DVD-ROM provides up to 17 GB of storage. The data on a DVD-ROM can
be stored in one or two layers. A single layer disk can store 4.7 GB per side. A
double-layer disk can store 4.25 GB on each layer, resulting in a storage capacity
of 8.5 GB per side. When using two layers, instead of one, the pit length is slightly
bigger, 0.44 um, to avoid interference. The second layer can contain data recorded
‘backward’, or in areverse spiral track. With this feature, it takes only an instant to
refocus a lens from one reflective layer to another. Additionally a DVD-ROM can
store data on both sides of the disk. The disadvantage of double-sided disks is that
they have to be turned over.

Magneto-optical disks offer different capacities, varying from 128 MB t0 9.1 GB.
When using double-sided disks, these also have to be turned over. Magneto-optical
disks have smaller seek times than optical disks, because the read/write head is
lighter than that of an optical disk.

There are many simple technology improvements, which are not yet widely used.
One of themisthe Calimetrics' Multilevel (ML) Recording technology, which uses
different depths of the pits in CD-ROM and DVD-ROM to store more informa-
tion at the same location. On conventional optical disk only lands (0) and pits (1)
are distinguished. At this moment ML recording uses 8 levels—or 3 bits—at each
location. An important feature of this technology is that manufacturers only have
to replace one chip in their drive designs. Conventional units have the laser pickup
connected to achip that converts the measured reflection to 0 or 1—the replacement
chip converts the same input signal to 3-bit sequences.

Another technological improvement is to use fluorescent multilayer optical-data.
The storage layers are coated with a fluorescent material. When the light hits the
layer fluorescent light is emitted that can transverse adjacent layers undisturbed. In
this way, many layers can be used in a disk, avoiding the problems of interference.
Constellation 3D claims that up to a hundred layers are feasible [96].

4.1 Jukebox Technology 51

CLV CAV
50 ‘ ; ; ; ; ; 50 ; ; :

45 |
40 |
35t
30t
25 F
20 f
15 t 1 15 +
10 t 1 10 |

(X)
(X)

Speed
Speed

.
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Offset (MB) Offset (MB)

Z-CLV P-CAV

50 50
45 r 7 45
40 40
35 7 35 1
30 r 7 30 b
25 1 25 1
20 1 20 1
15 7 15 1
10 7 10 1
5r 7 5r

0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Offset (MB) Offset (MB)

(X)
(X)

Speed
Speed

Figure 4.4: Optical-drive technology. The graphics plot the transfer speed as a function
of track number. CLV stands for constant linear velocity, CAV stands for constant angular
velocity, Z-CLV stands for zoned CLV, and P-CAV stands for partial CAV.

Drive Technology

The first generation of CD-ROM drives used constant linear velocity (CLV) tech-
nology, which adjusts the spin speed of the disk to provide aconstant transfer speed.
Thisisidentical to what the audio-CD players do.

The first generation of single-speed (1X) CD-ROM drives were based on the
design of audio CD drives, employing constant linear velocity (CLV) technology to
spin adisk at the same speed as an audio CD with a resulting bandwidth of 150
KBps. Variable spin is necessary to cope with audio data, which is always read at
single-speed, whatever the transfer rate for computer data. While audio disks have
to be read at single-speed, there is no limit for the CD-ROM. Indeed, the faster the
datais read, the better.

The speed of a CD-ROM drive is normally denoted as ‘nX’ and it means it pro-
vides a maximum bandwidth of n times 150 KBps. The same terminology is used
for DVD-ROM, except that in this case 1X is equivalent to 1250 KBps, which is
needed to play MPEG-2 encoded video. The top speed of DVD drives in the mar-

52 Chapter 4. Tertiary-Storage Hardware

ket at the end of 2002 is 16X, which is equivalent to a maximum transfer speed of
nearly 20 MBps and an average transfer rate speed of 14 MBps, but thisvalue grows
every few month.

Since there are more sectors on the outside edge of the disk than in the centre,
CLV uses a servo motor to slow the spin speed of the disk toward the outer tracks
in order to maintain a constant data-transfer rate over the laser read head. As the
speed of a CLV drive increases, access times often suffer as it becomes harder to
perform the abrupt changes in spindle velocity needed to maintain a constant high
data-transfer rate, due to the mass inertia of the disk itself.

The next step in the CD-ROM drive evolution was using constant angular veloc-
ity (CAV) to spin the disks. A drive using constant angular velocity transfers data at
avariable rate while the drive spins at a constant rate. Thisresultsin increased data
transfer rates and reduced seek times as the head moves toward its outside edge.

The first drives using CAV were using a mix of CLV and CAV called partial
constant angular velocity (P-CAV). InaP-CAV drive, CAV isused for reading close
to the centre of the disc while the drive switches to CLV mode for reads closer to
the outer edge. The main problem of P-CAV drives is the need to step the motor
speed up and down in response to moving the head. Full CAV was not used at the
beginning for faster drives, because the chips were unable to handle transfer speeds
faster than 16X.

With the advent of full CAV drives, the speed boosted very fast. A CD-ROM 56X
CAV drive, for example, spins the disk at 10000 rpm, resulting in a bandwidth of
8400 KBpsin the outer tracks. A problem with spinning disks at such high speedsis
excessive noise and vibration, often including loud hissing noise caused by air being
forced out of the drive casing by the spinning disk. Because the disk is clamped at
its centre, the most severe vibration occurs at the outer edges of the disk—at exactly
the point where the decoding circuits have to handle the highest signal rate. Some
drives however have spindle motors with anti-vibration mechanismsto try to solve
this problem. Another problem of spinning disks at even higher speeds is that they
disintegrate. The technicians of Atlas Copco AB [1] present very interesting exper-
imental results showing how the disks explode at rotation speeds of 28000 rpm.

Another technology is zoned constant linear velocity (Z-CLV), which splits the
disk into several CLV zones with different rotation speeds. The advantage of this
technology liesin better seek times, because the spindle motor does not need to spin
up and down so much when seeking across the disk. This technology is especially
popular for CD writers and DVD-RAM.

Figure 4.4 shows the transfer speed for the four drive technologies described.

True-X drives based on multi-beam technology achieve high transfer speedsusing
a CLV rotation system. Multi-beam technology uses multiple laser beams to read

4.1 Jukebox Technology 53

multiple tracks of the disk at once, resulting in both higher transfer rates and lower
rotational speeds. A diffracted laser is used to illuminate the disk with 7 discrete
beams. The central beam is used for focus and tracking in the same way conven-
tional players work. The 7 beams are spaced evenly on both sides of the central
beam and allow a multi-beam detector to pick up the data from 7 tracks.

In 1998 Kenwood introduced the first True-X CD-ROM drives and they received
very good reviews. However, Kenwood discontinued the production after many
users complaints. Another multi-beam drive was presented by Afeey on the Cebit
2001. It could read DVD-ROM at 25X and CD-ROM at 100X. However, no such
drive has yet appeared in the market.

4.1.2 Magnetic Tapes

For decades tapes have been the main tertiary storage medium. Their high storage
capacities and low cost per megabyte made them an appropriate media for backup,
which was the main application of tertiary storage. However, tapes are ill suited to
be used in applications where random access and real-time guarantees are needed,
as isour case. In the following paragraphs we show why it is difficult to build a
flexible multimedia archive based on tape technology.

The access time of tapes is very high, when compared to that of optical and
magneto-optical disks—tens or hundreds of seconds, against tens of milliseconds.
Additionally, accurately predicting the access time and transfer time is very com-
plex, if not impossible. The time needed for loading and unloading atape in adrive
is much higher than for optical disks (generally tens of seconds). A reason for this
is that many tapes have to be rewound before unmounting.

High bandwidths can be achieved with high-end hardware. However, the perfor-
mance of this hardware does not justify its high price when compared to optical
disks, especially because the access time is still orders of magnitude higher. Last
but not least, the wear tapes suffer from random accessis considerable.

We do not present a profound analysis of tape technology. Through the years
much has been written about magnetic tape and their performance. Hillyer et al.
[43] and Chervenak [22] provide agood overview of tape technology. Johnson et al.
[53] present abenchmark methodology for tapes. The PC technical guide[80] gives
an on-line overview of current technology and products in the markets.

Magnetic tapes store data as small magnetized regions. The tape is composed of
magnetic material deposited on a thin flexible substrate. The tape isrolled along a
reel. Therefore, the thinner the substrate the more tape can be stored per volume.
However, athin substrate is more prone to distortion and breaking when submitted
to high accelerations and many start and stop operations.

54 Chapter 4. Tertiary-Storage Hardware

Tapes are categorized by the track orientation and the tape width. The most im-
portant track orientations are linear and helical. In a linear tape the data is stored
in longitudinal tracks through the length of the tape. A popular recording variety of
linear tapes is serpentine tapes, in which the dataiis recorded in an’S' shape. The
datais recorded along the length of the tape, then the direction is reversed and the
head shifts sideways to record another track. Helical scan tape drives wrap the tape
around a cylinder that contains the read/write heads and rotates the cylinder rapidly
while the tape is transported relatively slowly. Helical tapes provide large storage
capacities, because the track and linear density are high. They also provide high
transfer rates, because of the high relative speed of the head across the tapes.

Tapes are mainly designed to stream data. Thereis a start/stop problem whenever
the application interrupts the stream and then tries to resume it. After the drive
stops, it reverses direction to position the heads in the inter-record gap before it
can resume the read. A solution that many drives provide to this problem is that
they go on reading and caching the data into secondary storage, which implies that
secondary storage buffering must be attached to the tape drive.

Estimating the locate (or seek) time is extremely difficult when working with
tapes. One reason isthat if there is an error while writing a block of data, the block
IS rewritten again in the next portion of the tape. This makes it difficult to predict
the exact location of the data on the tape. Worse still, when the drive tries to read
the faulty block it may try to reread it many times, before it concludes it is faulty
and tries with the next block.

Hillyer et al. [44] present amodel to estimate the [ocate time on serpentine tapes.
They show that performing this estimate is complex. One reason for the compl exity
is that the lengths of the tracks are not equal. Another reason is that the drives
store the location of particular blocks in the tape to which they can jump when
performing seeks. The drive uses the high-speed seek to jump to a known block
before the desired block and then reads the tape until it reaches the desired block.
They show that an individual model needs to be made for each tape, which takes
severa hours. Using the model built for another tape can result in bad predictions.
Therefore, thereis not a unique locate time model for agiven tape drive technology,
but there must be an individual model for each tape in the jukebox. Estimating the
locate time for linear tapes is easier, because the seek time is linear in the distance
the tape must travel [53].

4.2 Hardware Model

We now present an analytical model to compute the time to perform each jukebox
operation. Figure 4.5 shows the structure of the hardware model using aUML class

4.2 Hardware Model 55

Jukebox

4
v V

Drive Robot
I 4
v v

Drlvg Picker *—> Motor
Behavior

i

Disk

I

Single Layer
Disk

Figure 4.5: Structure of the hardware model. The different parts of the model are repre-
sented as classesin a UML class diagram.

diagram. At the higher level we have the jukebox model that provides the higher
level functions that compute the time to load and unload a disk and to read data
from a disk. These times are computed using the specific model of the drive and
robot involved. As the behaviour of a drive varies depending on the type of disk
loaded in it, the drive model uses different drive behaviour models to compute the
times for each type of disk. We model a robot with independent motors, one for
each axis of the robot, and with one or multiple pickers. We use separate models for
the motors and the pickers.

The rest of the section describes each part of the model in a bottom-up fashion.
Subsection 4.2.1 presents the disk model. The model of the disk is used in Sub-
section 4.2.2 to model the drives. Subsection 4.2.3 presents the essentials of the
robot and jukebox model. These models are described in further detail for a specific
jukebox model.

In therest of this section we useamix of Z notation [103] and normal mathemat-
ical formulae to specify the functionality provided by the model. The Z notation is
used to describe typed parameters and the operations of the model, and aso to de-
scribe logical relations among them. We use the normal mathematical notation for
better readability of complex formulae.

56 Chapter 4. Tertiary-Storage Hardware

4.2.1 Disk Model

This section presents the model of an optical or magneto-optical disk. The main
goal of the model isto provide a mapping from an offset on the disk, given in bytes,
to atrack number. The drive model, in turn, uses the track number to compute the
accesstime, transfer time, etc. The model is restricted to single-layer disks, because
the extension needed to convert this model in a model for double-layer disks does
not provide more insight into the issues that are relevant to the model.

__SingleLayerDisk
Ry : PhysicalSze
R : PhysicalSze
p : PhysicalSze
BS: Sze
N:N
Tracks: N
length : TrackNumber — PhysicalSze
sumlength : TrackNumber — PhysicalSze
TL : PhysicalSze
BL : PhysicalSze
block : Offset — BlockNumber
track : BlockNumber — TrackNumber
size : TrackNumber — Sze

We model an optical disk by viewing the data as stored in concentric circles in-
stead of a spiral and we show that this approximation is very accurate. Each circle
represents atrack. The exact model of the data stored is an Archimedes’ spiral.

The model takes as parameters the inner and outer radius defining the area on the
disk the data can be stored, represented as Ry and Ry, respectively, the track pitch
(p), the block size in bytes (BS) and the maximum number of blocks that can be
stored in adisk (N).

We compute the number of tracks on the disk (Tracks) using the inner and outer
radius of the recordable area and the track pitch. The length of atrack i (length(i))
Is a function of the distance from the inner radius. The length of the first x tracks
(sumlength(x)) is simply the sum of the length of the tracks. Therefore, we can com-
pute the total length of the recordable area of the disk (TL) as sumlength(Tracks).

R —Ro

Tracks = (4.1

4.2 Hardware Model 57

length(i) = 2 7 (Ry + i p) (4.2)

sumlength(x) = Z length(i) = Z 2n (Ry+1ip)
i=0 i=0

4.3

:(x+1)27rR0+27rpX(X2+1) *3
=apxX+n(p+2Ry) X+271Ry

TL = sumlength(Tracks) (4.9

We now show that the length of the data track computed with the concentric circles
approximation is very near the exact length of the spira when using CD-ROM.
When using DV D-ROM the approximation is even better, because the track pitchis
smaller. Applying the formulae to the CD-ROM specification (Ry = 22.5mm R =
58mm, p = 1.6 um), we obtains 5.611249 x 10° um as value for TL, while the exact
length of the spiral is5.6113 x 10° um.

In most cases we need to know the track number of a given offset x in the disk.
The smallest part of data that can be accessed independently is a sector or block
[28]. Therefore, we compute the position of a particular byte as the position of the
beginning of the block which contains the byte. Byte x belongsto block | 55 |, where
BSisthe block sizein bytes. We compute the block length BL using the total length
of the disk TL and the maximum number of blocks N that can be stored in the disk
using Equation 4.5 and compute the track to which byte x belongs asthe track where
the block containing x is as shown in Equation 4.8. In Equation 4.6 s is the block
number corresponding to byte x. Finally, we compute the size of atrack x in bytes
(size(x)) using Equation 4.9.

_TL

BL = (4.5)

_ w (4.6)

SBL = ptrack(s)? + 7 (p + 2 Ry) track(s) + 2 7 Ry (4.7)
|- (p+2Ry) + \/(JT (Pp+2Ry))2—4np(2nrRy—sBL)

track(s) = 2ipi27R) (4.8)

size(x) = 'e”gtLh(X) BS (4.9)

4.2.2 Drive Model

The goal of the model is to predict the time needed to transfer data and access
data on a medium using a given drive. It must also predict the time needed to open

58 Chapter 4. Tertiary-Storage Hardware

and close the drive, both when the drive is loaded and empty. It also predicts the
time it takes to spin-down the drive. This model covers the most important drive
technologies—CAV and CLV. The other two technologies we discussed in Subsec-
tion 4.1.1 (P-CAV and Z-CLV) are covered by simple extensions to this model.

TechnologyType ::= CLV | CAV

The drives in a jukebox may be different and differ on the type of RSM they can
handle. When a drive can handle multiple types of media, the performance with
each type may be different. Therefore, we have a DriveBehaviour for each drive
model when handling the possible RSM types.

Drive
|7Models : F(MediaType x DriveBehaviour)

behaviour : MediaType — DriveBehaviour

The DriveBehaviour gets the information about the disk from the model presented
in the previous subsection. If the drive uses CLV technology, the transfer speed
(Srangfer) 1S cOnstant. Instead if the technology is CAV, the rotation speed (Sotate) IS
constant. In one rotation the drive can read the data of a full track. Therefore we
can compute the transfer speed if we know the rotation speed and vice-versa, as
indicated in the first predicate of the Z specification.

We compute the transfer time given the offset o and size s of data to transfer in
the following way:

2s
Strangfer (to) + Syrangfer (td)

tiransfer (0’ S) = (4-10)

where

t, = D.track(D.block(0))
tg = D.track(D.block(o + 9))

4.2 Hardware Model 59

__DriveBehaviour
D : SngleLayerDisk
technology : TechnologyType
Constant\elocity : Speed
wy - Acceleration
wyq . Acceleration
Amove . Acceleration
teettie - TIME
Tspinup = TiMe
Tspindown : TiMe
Tinactive - Time
Tload : Time
Trecognition : Time
Tgext - TiIME
Stranger - TrackNumber — Speed
Sotate . TrackNumber — Speed
trotate - TrackNumber — Time
tehangespin - TrackNumber x TrackNumber — Time
tmove - TrackNumber x TrackNumber — Time
tseek - TrackNumber x TrackNumber — Time
tiranger - Offset x Sze — Time
taccess - Offset x Offset — Time
topen - Content — Time
taose . Content — Time

(V track : TrackNumber e
Strangfer (track) = Sorate(track) « D.size(track) A
technology = CLV = Syanger (track) = Constant\Velocity A
technology = CAV = sqae(track) = ConstantVel ocity)
(V source : Offset; dest : Offset o
taccess(SOUrCe, dest) =
tseek(D.track(D.block(source)), D.track(D.block(dest)))+
trotate(D-track(D.block(dest))))
(Y to : TrackNumber; t; : TrackNumber e
tseek(to, tl) = max{tmove(th tl)a tchangelspin(tO» tl)})

60 Chapter 4. Tertiary-Storage Hardware

Equation 4.10 uses the track where the transfer must begin, given by the offset, and
the track where the transfer must end, given by the offset plus the number of bytes
to read. This equation can be used both for CLV and CAV drives. We deduced this
equation from the formulae to compute the time it takes to a uniformly accel erating
vehicleto travel a given distance shown in Equation 4.13. We model the number of
bytes to read (size) as the distance the head has to travel while reading data.

Final Speed — Initial Speed

Acceleration = (4.11)
Time
. . Accelerati Time?
Distance = Initial Soeed x Time + ceeera |;)n il (4.12)
, 2 x Distance
t = — - 4.13
— Hme Initial Speed + Final Speed (4.13)

Although we do not show the model corresponding to a P-CAV and Z-CLV drive,
we shortly explain how they compute the transfer time. A P-CAV drive uses CAV
technology to read the first k tracks and CLV technology read the other tracks. To
represent a P-CAV drive we use the constant angular velocity corresponding to a
CAV drive and provide an extra parameter indicating the track number where the
drive changes from CAV to CLV technology. We compute the transfer time as the
sum of thetransfer time of the bytesfalling in the tracks read using CAV technology
and the bytes falling in the tracks in which CLV is used. The function to compute
the transfer time for a Z-CLV drive uses different cases for the ranges where each
speed holds. Thisis an extension of Equation 4.10.

The access time (taccess) 1S the time that elapses between issuing a random read
command and starting to read the data from the disk. The access time is computed
as the sum of the seek time (tek) t0 go from the origin to the destination, plus
the rotational latency (t.qate) @t the destination track. This equation is shown in the
second predicate of the Z specification. To compute the access time we need to
know the position of the head at the time—origin track—and the destination track.
Given that the function to compute the access time takes as parameters the offset
of the last byte read and the offset of the next byte to read, we compute the tracks
corresponding to these offsets.

The rotational latency (tiqate) 1S the time spent waiting for the correct byte to
rotate to the position under the head. The rotational latency is directly related to the
disk rotation speed (Sotate), @S expressed in Equation 4.14.

trotate(track) = Sr_o%ate(traCk) (4.14)

The seek time (tsex) 1S the time needed to position the reading head at the appro-
priate track and settle once the track has been reached. The seek time involves the

4.2 Hardware Model 61

head movement and the time needed to spin up or down the rotation speed of the
motor in the case of CLV drives. In CLV drives different motor speeds are used to
read data from the disk. Therefore, the seek time of CLV drives in genera higher
than that of CAV drives.

When using a CLV drive, the rotation speed on the inner tracks is higher than
on the outer tracks. Moving between tracks implies accelerating or decelerating the
rotation of the disk. The acceleration is called spin-up and occurs at an angular
acceleration of wy. The deceleration is called spin-down and occurs at an angular
acceleration of wqy [25]. We compute the time it takes to change the spin speed
(tehangespin) USiNG the following function:

Soae(l0)-Soaet) jf t < t,

tchang%pin(to’ tl) = {sm ot)aidsroae(t) i
%UHO otherwise.

(4.15)
The acceleration and deceleration values are in general not provided in the specifi-
cation of a drive. However, the manufacturers generally report the spin-down time
(Tspindown) @nd spin-up time (Tepinup). The spin-down time is the time it takes to stop
the spindle motor. The spin-up timeisthetimeit takes the drive to start reading data
again after it has spun down.

We can compute the values of wq and w,, acceleration needed to go from rotation
speed 0 to full rotation speed or vice-versa. The maximum speed in aCLV driveis
needed for reading data from the inner tracks. We use the formula to compute the
acceleration presented in Equation 4.11.

wd — 0 - SrotaIE(O) (4.16)
Tspindown
0)-0
L= Sotate(0) 4.17)
Tspinup

To prolong the lifetime of the mechanical partsin the drive, most high-speed drives
lower or stop the rotation of the disk after a period of inactivity. Some drives main-
tain a low stationary spinning speed to prevent high spin-up times. In most cases
the system administrator can set time after the last read when the drive spins down.
We view thisvalue as another parameter of the model called maximuminactivetime
(Tinactive)-

The other component of the seek timeisthe timeto move the head (tyove). Moving
the head consists of an acceleration phase, alinear coasting phase and a decel eration
phase. In ashort seek the accel eration and decel eration phase dominate [43], so we
consider that the head accelerates until it reaches half the distance to move and then
decelerates. The speed of the acceleration and deceleration is ayge. The distance

62 Chapter 4. Tertiary-Storage Hardware

over which the head acceleratesis the same as the distance over which it decelerates
“0—;1'. Replacing appropriately in Equation 4.12 we derive the function tmove(to, t1)
that computes the time needed to move the head between two tracks. Once the
destination track is reached the head needs to settle on the track [94]. Settling on
the track requires teyye time. We could also use the model proposed by Ruemmler
et a. [94] for modelling long seeks on a hard disk and incorporate the coast phase
where the arm moves at maximum velocity.

2 ot to— tl
tmove(to,tl) =2 Brove + teettie = 2 Brove + teettie (4-18)

The head movement and the change of spin can be done simultaneously. There-
fore, the seek time is the maximum time required to complete both tasks. When
the distance between the tracks is small, the time needed to move the head weights
more and when the distance is big, the time needed to change spin does. The Z
specification shows how the seek time (tsek) IS cOMputed.

In order to compute the time to load and unload a drive, we need to compute the
time needed to open and close the drive, both when the drive is loaded and when it
IS empty.

The close time (tgose) 1S the time needed to insert the disk in the drive, either by
pulling in the tray or pulling in the disk. Once the disk has been loaded, the drive
starts spinning up the disk to find out the type of disk loaded in the drive.

The recognition time (Trecognition) 1S the time it takes to recognize the type of disk
loaded. It depends on the type of disk loaded. Even within the same type of disk, the
recognition time varies considerably. We could not determine the reason for these
differences. Therefore, we use the highest recognition time we could measure for
the type of disk. In most drivesthe load timeislow and the recognition timeis high,
while in some drive the timerelation isinverted.

Another way of computing the recognition timeisto makeit afunction of the disk
to load. We do not use this computation in the model, because then the recognition
time should depend on the contents in the jukebox and not of the type of media or
technology used. To compute the recognition time in this way we should have to
provide a mapping from each disk in the jukebox to the recognition time, and use
the unique identifier assigned to each disk in the jukebox as the parameter to the
function.

We compute the time needed to close the drive as:

Tioad + Trecognition if content # 4,

. (4.19)
Tioad otherwise.

toose(CONtent) = {

4.2 Hardware Model 63

The gject time (Tyex) iSthetimeit takes to g ect the disk from the drive. If the drive
has atray on which the disk is placed, then it is the time needed to open the tray. If
the drive has adot instead of atray and the drive is empty, the gect timeisO.

The drive first needs to spin down the disk before it can unload it. To accurately
compute the time needed to open the drive we should need as parameters the last
track that was read and if the disk is spinning. However, we consider that thisistoo
detailed for the model. Therefore, we compute the worst-case time. The worst case
assumes that the disk is spinning at the maximum speed, which means that the last
track read was 0, which is precisely the definition of the spin-down time.

. (4.20)
Tqject otherwise.

topen(CONtent) = {

4.2.3 Jukebox and Robot Model

In most jukeboxes there is only one shared robot, which is able to load and unload
any RSM in the jukebox to any drive. In the presence of multiple robots, there are
different usage scenarios for the robots. We classify the robots according to their
functionality and scope. A robot can be specific for loading or unloading, or be able
to perform both loads and unloads.

RobotFunctionality ::= Loader | Unloader

_ Robot
tposition : POSItion x Position — Time

tyap : Position — Time
capabilities : I RobotFunctionality

The robot model can compute the time needed to move an RSM between any two
locations in the jukebox (tpestion), the time needed to grab an RSM from a shelf
or drive (tya), and the time needed to place an RSM in a shelf or drive (tpace)-
The device where the RSM must be grabbed from or placed is given by a specific
physical location that is specific for each jukebox type. The model of the robot in
the smartDAX describes the functionality in more detail.

In our model the jukebox has m drives, r robots and s shelves. We model each
drive and robot separately. The model has | robots capable of loading RSM into
drives and u robots capable of unloading them. The | robots for loading may be the
same as the u robots for unloading, asisthe casein most jukebox architectures. The

64 Chapter 4. Tertiary-Storage Hardware

total number of robotsisr. The functions getDrive, getRobot and getShelf give the
model of the corresponding device given the device number. As in the rest of the
functions in the model, we assume that the functions are suitably restricted to the
actual configuration of the jukebox.

_ JukeboxResources
Robots : [F Robot
Drives: F Drive
Shelves : F Shelf
getDrive : DriveNumber — Drive
getRobot : RobotNumber — Robot
getShelf : ShelfNumber — Shelf
mr,sl,u: N

#Raobots = r; rangetRobot = Robots; #(dom getRobot) = r
#Drives = m; rangetDrive = Drives, #(domgetDrive) = m
#Shelves = s; rangetShelf = Shelves;, #(domgetShelf) = s
| = #{robot : Robot | Loader € robot.capabilities}

u = #{robot : Robot | Unloader € robot.capabilities}
r<l+u

The scope of arobot (scope) is given by the set of drives and shelvesit can serve. A
dedicated robot is a robot whose scope contains only one drive in the set of drives.
A shared robot has more than one drive in the scope. In a jukebox that only has
dedicated robots, there must be as many robots as there are drives.

We consider only jukeboxes where all the shelves and drives are reachable and
each RSM can go back to its shelf. Therefore, each RSM in the jukebox can be
loaded and unloaded from at least one drive, and each drive can be loaded and un-
loaded by at least one robot. Additionally, the model guarantees that every RSM
that can be loaded from a shelf to a drive can also be unloaded back into the shelf.
These conditions are expressed formally by the predicates in the Z specification
of the robot functionality. The functions getRobotsThatLoadDrive and getRobot-
sThatUnloadDrive returns the robots that can load and unload a given drive, re-
spectively. The functions getRobotsThatLoadShelf and getRobotsThatUnloadShel f
provide the same information for a shelf. Finally, the function getDrivesReachable-
FromShelf computes the drives that are reachable from a shelf, i.e., the drives into
which the RSM in the shelf can be loaded, and then unloaded and brought back to
the shelf. The hardware model does not guarantee that the drives can read the RSM,
because the type of the RSM in the shelf could be incompatible with the function-
ality of the drives. These guarantees are provided by the jukebox controller (see
Section 4.3).

4.2 Hardware Model 65

The method to describe the scope and functionality is flexible and easy to param-
eterize. An interesting example is modelling a Memorex Telex 5400 tape-jukebox,
which has two robots. The two robots in principle can serve al the shelves and
drives, although, in practice they are generally configured to serve a half of the
jukebox shelves and drives each [89]. Both configurations (and every other inter-
mediate configuration) can easily be modelled and modified using the jukebox-
functionality model. We can aso easily model a jukebox with separate aisles, re-
sembling a miniload AS/RS as the Odetics jukebox described in Section 2.3.

However, we do not model the possible interference between multiple robots, be-
cause we consider that the interference patterns are very specific to each jukebox. In
the presence of multiple robots with overlapping scopes, the model should provide
at least the worst-case interference time between each pair of robots. The jukebox
scheduler needs these times to take into account the worst-case contention time for
the use of ‘jukebox space’. Our scheduling-problem models do not take into account
the robot interference either.

__ JukeboxFunctionality
JukeboxResources
scope : Robot — [F Drive x F Shelf

getRobotsThatLoadDrive : Drive — [Robot
getRobotsThatUnloadDrive : Drive — [F Robot

getRobotsThatLoadShelf : Shelf — F Robot
getRobotsThatUnloadShelf : Shelf — F Robot

getDrivesReachableFromShelf : Shelf — F Drive

Y drive: Drive e
getRobotsThatLoadDrive(drive) =
{r : Robot | (let sc == scope(r) o
drive € first(sc) A Loader € r.capabilities)} A
getRobotsThatUnloadDrive(drive) =
{r : Robot | (let sc == scope(r)
drive e first(sc) A Unloader € r.capabilities)}

¥ shelf : Shelf o
getRobotsThatLoadShelf (shelf) =
{r : Robot | (let sc == scope(r)
shelf € second(sc) A Unloader € r.capabilities)} A
getRobotsThatUnlcadShelf (shelf) =
{r : Robot | (let sc == scope(r)
shelf € second(sc) A Loader € r.capabilities)} A

66 Chapter 4. Tertiary-Storage Hardware

getDrivesReachableFromShelf (shelf) =
{drive: Drive| (dry,r, : Robot | r; € Robots A r, € Robots e
r, € getRobotsThatLoadDrive(drive) A
r, € getRobotsThatUnloadDrive(drive) A
r, € getRobotsThatUnloadShelf (shelf) A
r, € getRobotsThatLoadShelf (shelf))}

VY shelf : Shelf; drive: Drive| shelf € Shelves A drive € Drives e
(dry : Robot | r; € Robots e
(let sc; == scope(ry) o
drive € first(sc;) A shelf € second(sc;) A Loader € ry.capabilities))
= (dr, : Robot | r, € Robots e (let sc, == scope(ry) e
drive € first(scy) A shelf € second(sc,) A Unloader € rp.capabilities))

The main goal of the jukebox model is to be able to predict the time needed to load
an RSM into adrive, read datafrom an RSM onceit isloaded in adrive, and unload
an RSM.

The drives and shelves have fixed positions in the jukebox. The model uses
these positions to compute the time needed to move an RSM and to access a shelf
and drive in order to place or grab an RSM. The functions getDrivePosition and
getShelfPosition provide the location of the devices. The robots generaly have an
idle position where they are parked when idle that is used in the computations as a
starting or finishing point of the movements involving the robot.

The jukebox model uses the drive model presented in the previous subsection.
As we have aready discussed, the performance of the drives depend on the type of
media handled. The functions tyanger @Nd tacess COMpute the transfer and accesstime
for a drive and media combination.

_ Jukebox
JukeboxFunctionality

getDrivePosition : DriveNumber — Position
getShelfPosition : ShelfNumber — Position

tranger - DriveNumber x MediaType x Offset x Sze — Time
taccess - DriveNumber x MediaType x Offset x Offset — Time

tunicad - RODOtNumber x DriveNumber x ShelfNumber x MediaType — Time
tioad - RODOtNumber x DriveNumber x ShelfNumber x MediaType — Time

tioey - DriveNumber — Time

the g - DriveNumber — Time

4.2 Hardware Model 67

¥ dn : DriveNumber; media : MediaType o
(let drive == getDrive(dn) e
(let db == drive.behaviour(media) e
(V offset : Offset; size: Sze e
tiranger (AN, Media, offset, Size) = db.tyanger (Offset, Size)) A
(V source : Offset; dest : Offset o
taccess(dN, media, source, dest) = db.tacess(SOUrce, dest))))

In general the file systems used for tertiary storage media store the data sequentially
(e.g., 1SO-9660 [77]). Therefore, reading afile implies reading a given number of
bytes starting at a given offset on the medium. However, if the file system uses a
more complex way of storing thefiles (e.g., i-nodes), we can use the information of
the file system to transform a request unit corresponding to afile or part of afileto
a set of request units as required by this model.

The functions used to compute the time needed to load and unload a drive are
tioag @Nd tunioad, respectively. To compute these functions we use the model of the
drive and the robot, which is specific to each jukebox (specified in DAXRobot for
the DAX jukebox). The model also provides functions to determine the maximum
and minimum load time for each drive and the maximum and minimum over all the
drives (t7 and t{5%).

Theway in which the robot is used depends strongly on the jukebox architecture.
Therefore, we are not able to present a general robot model as we do for the drives.

Instead, we present the model of the smartDAX 700 that we were able to validate.

Model of smartDAX700

In asmartDA X700 the disks are stored as shown in Figure 4.6. It has 18 columns,
which interleave in odd and even rows, and 40 rows. The robot is in the centre of
the jukebox. At the bottom are four drives, one in each corner of the jukebox.

The position of each device—shelf, drive, mailbox, and robot—is given by arota-
tional coordinate x, avertical coordinatey, and the radiusrad. Theradiusisrelative
to the centre of the jukebox. The vertical coordinate isin the range [3000,155000],
the rotational (or horizontal) coordinate is in the range [0,18000] and the radius
is in the range [0,2100]. The firmware can provide the position of each device in
the jukebox and the idle position of the robot. We have noticed, however, that after
resetting the jukebox, the value of the reported positions varies slightly.

68 Chapter 4. Tertiary-Storage Hardware

Figure 4.6: Architecture of the smartDAX 700 jukebox. In the picture on the | ft, the boxes
at the bottom represent the drives. Thefront left driveis open and waiting to be loaded, while
the robot is grabbing a disk from a shelf. The right picture shows atop view of the jukebox.

Position
XN
y: N
rad : N

__ DAXRobot
Robot
IdlePosition : Position
tmove - POSItiON X Position — Time
tealibrate - POSItion x Position — Time
tserte - TiME
elevator : Motor
rotator . Motor
picker : Picker

Loader € capabilities A Unloader € capabilities
¥ source : Position; dest : Position e
tmove(SOUICe, dest) =
max{elevator .te(abs(dest.y — source.y)),
rotator.tmove(@bs(dest.x — source.x))}+
teatibrate(SOUrCe, dest) A
toosition(SOUrCe, dest) = tmoe(SOUrce, dest) + teeie A
tyran(SOUrce) = picker.tyap(source) A
tolace(dESt) = picker .tyjace(dest)

The firmwareis ableto control only one picker, although in the right picture in Fig-
ure 4.6 we can see two pickers one at each end of the board. Therefore, in DAXRobot
we model the robot with one picker. The picker is attached to a board that moves
vertically along the arm and also rotates along the axis. Two independent motors

4.2 Hardware Model 69

perform these movements:. the elevator and the rotator. After performing aload or
an unload the robot returns to a predefined idle position (IdlePosition). Theidle po-
sition isaround (51160, 6050, 0). The robot has the capacity to load and unload the
drives, as expressed in the first predicate of the Z specification.

The jukebox can be operated in two modes: user mode and operator mode. In user
mode the jukebox performs transactions as moving a disk from a slot to adrive, or
moving a disk between two slots. In operator mode, any kind of robot movement
can be performed using the coordinates in the jukebox.

When using the operator mode, the model can compute the time to move between
two positions (tyove) Without taking into account the time to settle. We compute the
time to move as the maximum time it takes to any of the two motors to move the
picker along its corresponding axis, plus the time to calibrate the robot (teaiprate)-
This computation is shown in the second predicate of the Z specification. We also
use tyove t0 cOmpute the time it takes to move the picker back to the idle position,
as shown in the DAXJukebox model. When using the operator mode, we use the
function tpesition that takes into account the time to settle (tswe). The computation of
toosition 1S Shown in the third predicate of the Z specification. The last two predicates
show that the time to grab and place an RSM are computed by the picker.

Thetimeto calibrate the robot depends on the source and destination of the move-
ment. Performing multiple measurements we have determined that there are two
main calibration areas in the jukebox. One calibration area is at the bottom of the
jukebox (wheny isin the range [3000, 6700]) and another calibration areais at the
top of the jukebox (wheny is in the range [146800, 155000]. In these calibration
areas the robot takes longer to calibrate. We compute the time to calibrate using a
function we derived from performing curve fits. Basically, the time to calibrate is
longer when the robot is close to the limits of the vertical axis.

The motors are defined by the maximum velocity (Viax) and the acceleration (a).
A motor accelerates until it reaches maximum vel ocity, moves at maximum vel ocity,
and then decelerates to stop at its destination.

Motor
Vimax - Jpeed

a: Acceleration

tmove . Distance — Time

To compute the time needed to move (tmoe(X)) We first compute the time needed to
reach maximum velocity (tmax). Using this time we compute the distance covered
during acceleration and deceleration (daec).

V,
trex = ?’“”‘X (4.21)

70 Chapter 4. Tertiary-Storage Hardware

a L

dacc = 2 (422)

2 X If X < 2 da,
o [2 4.23
mOVE‘() {2 tmax + % Other\l\llse ()

In order to pick-up/place adisk, the picker moves outward toward the corresponding
shelf or drive. The picker then grabs/places the disk using a robotic hand. Finaly,
the picker retracts again. The functions ty.a, and tyace COmpute the time needed to
grab and place adisk from/to a position in the jukebox, respectively. The picker has
aretractor motor that moves along the radius—extending or retracting. The times
to pick up and drop adisk on ashelf or adrive are tgigyp and tgop, respectively.

—_ Picker
tyrap : PoOsition — Time
toiace - Position — Time
retractor . Motor
tpickup : Time
tarop - TiIME

¥ pos : Position e (
tgran(POS) = retractor .tmove(pos.rad) + tpigup + retractor.tyoe(pos.rad) A
toiace(POS) = retractor .tmoe(pos.rad) + tgop + retractor . tige(pos.rad))

The jukebox enforces to perform the activities needed to load and unload a drive
sequentially. Furthermore, after moving adisk it always returns the robot to theidle
position.

The execution of aload (unload) is done in the following sequence:

1. Open drive.

Move robot from idle position to shelf (drive).
Pick up disk from shelf (drive).

Move robot from shelf (drive) to drive (shelf).
Place disk on drive tray (shelf).

Close drive.

N oo o ~ w DN

Move robot from drive (shelf) to idle position.

4.2 Hardware Model 71

The functions t)gag and tyncag 1N the DAXJukebox specifications compute the load
and unload times, respectively.

_ DAXJukebox
Jukebox
robot : DAXRobot

Robots = {robot}

scope(robot) = (Drives, Shelves)

¥ rn : RobotNumber; dn : DriveNumber;

sn : ShelfNumber; media : MediaType o
(let drive == getDrive(dn) e
(let db == drive.behaviour(media) e
(let shelfPosition == getShelfPosition(sn) e
(let drivePosition == getDrivePosition(dn) e
tunoad(rn, dn, sn, media) =

db.topen(RSM)+
robot.tpesiion(robot. I dlePosition, drivePosition)+
robot.tyan(drivePosition)+
robot.tyesiion(drivePosition, shelfPosition)+
robot.tyace(Shel fPosition)+
db-tclose(g)"‘
robot.tmove(shel fPosition, robot.l dlePosition)

A

tioaa(rn, dn, sn, media) =
db.topen(2)+
robot.tpesition(robot.1dlePosition, shel fPosition)+
robot.ty an(shelfPosition)+

robot.tyesiiion(ShelfPosition, drivePosition)+
robot. tyace(drivePosition)+

db.tyesee(RSM)+

robot.toe(drivePosition, robot.ldlePosition)))))

4.2.4 Model Validation

This section shows that the model can be used effectively to model the hardware.
It is neither the goal of this dissertation to build a system specific for one jukebox,
nor to obtain the exact parameters of the hardware. Therefore, we have estimated
the parameters using only simple methods. The parameters can be further refined to
provide a better fit to the hardware performance.

72 Chapter 4. Tertiary-Storage Hardware

CAV | CLV
Srotate(rPM) 10500
Stransfer (KBPS) 1200
wy(rot/s?) 0.0505 | 0.115
wg(rot/s?) | -0.0462 | -0.13
Amove(UM/S) 4250 | 1600
teettia(S) 0.01 | 0.06

Table 4.2: Parameters of the drives for validating the drive model.

.857 , ; . : :
085 Measured 0.55 Measured
0.856 Estimated 1 05} Estimated
0.855 |- . o] 045 |
g o SR
2 0853 z DR
g 2 o030%
i: 0852 . + + o+ . B |: 025 |
0.851 * 1 02 &
0.85 ¢ ' 1 0.15 t
0.849 : : : : : 0.1 : : : : :
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Offset (MB) Offset (MB)
(a) CLV drive (b) CAV drive

Figure 4.7: Comparison between the estimated and measured read time. The graphics
show the time needed to read one-megabyte blocks.

Drives

Given that the model presented can be used as it is for CAV and CLV drives, we
show the estimates and measurements of one CAV and one CLV drive. Table 4.2
shows the parameters used. We obtained these parameters by performing curve fit-
ting and using the manufacturers' specifications of the drives. The CAV driveis a
48X CD-ROM drive model ‘LG CRD-8484B’ from NEC and the CLV driveis an
8X CD-ROM drive ‘CW-7520" from Matsushita.

Figure 4.7 showsthe read time of both drives when reading one-megabyte blocks.
Thetime estimated for the CLV fits the measured time with a difference of only one
millisecond. In the case of the CAV drive, the differenceis clearly bigger, especialy
at the outer edge of the disk. All measurementsthat we performed show a point were
the performance of the CAV drives degrades. The point at which the degradation
occurs differs, but it is always in the outer tracks of the disk.

Figures 4.8 and 4.9 show the access time when using a CAV and CLV drive,
respectively. The parameters needed to compute the access time are not reported

4.2 Hardware Model 73

Time (sec)

0.25
e R e
Ll S e
01 r A R e
) i SRl
R %ﬁ+%ﬁ$ﬁ++&1$+
0.05 S
0 L
20000
16000
2001 12000
Source Track
inati 8000 4000
Destination Track g o0
(a) Estimated
Time (sec) 5 L
025 r N + + ++++ S . R
0.2 ;
0.15 I o
01
0.05 |
O L
20000
16000
2001 12000
Source Track
Destination Track 4000 0 0

0.04
0.02

-0.02 ¢
-0.04
-0.06
-0.08 1 i + 1
-01 1
-0.12 ¢ . 1
-0.14

Time (sec)

-16000 -8000 0 8000 16000
Track distance

(c) Error estimate

Figure 4.8: Comparison between estimated and measured accesstime for aCAV CD-ROM
drive.

74 Chapter 4. Tertiary-Storage Hardware

20000

16000
Source Track

Head Movement
Change Spin

S

T
Ry

% e
s

-
it
s

e

+H
5

HY
i

Time (sec)
O L

04
03t
02
01

75

Q
(=]
S]
N

Source Track

8000 16000

0
Track distance

(a) Estimated
(b) Measured

-8000
(c) Error estimate

-16000

Destination Track
Destination Track

0Fr

Time (sec)

05 r
01 r

03
02 r

04

Figure 4.9: Comparison between estimated and measured accesstimefor aCLV CD-ROM

drive.

4.2 Hardware Model

Parameter Elevator | Rotator | Retractor
Vimax (UNIts/s) 70000 20000 10000
a(units/s?) 300000 35000 15000

Table 4.3: Parameters of the elevator, rotator and retractor motors.

in the manufacturers’ specifications, so we derived from the estimated spin-up and
spin-down times. We derived the spin-up/-down accel eration and adjusted the head
acceleration to fit the measurements.

Jukebox

Table 4.3 shows the parameters used for the elevator, rotator and retractor motors.
The maximum velocity and acceleration are provided by the jukebox firmware. All
the interactions with the jukebox involve a constant time of approximately 0.16s.

Figure 4.10 shows how the model of the motors fits the measurements obtained
from the jukebox in operator mode. In this case we move the picker on only one
axis to measure the performance of each motor separately. The right-hand side of
the figure shows the error of the estimate.

Figure 4.11 shows the measurements and the error of the estimate when comput-
ing the functions tmoe and tpesition fOr random positions in the jukebox. The estimate
of the time to move presents larger errors when the robot is moved into the calibra-
tion area. The function to compute the time to calibrate (teaiprate) 1S More complex
when moving the robot on the two axes. However, when computing tyosion, this
error is masgueraded by the time to settle (tsaye). Our estimate of teyye iS0.5S.

Figure 4.12 shows how the model of the time to grab and place a disk from/in a
slot (tgan and tyace, respectively) fit the measurements obtained from the jukebox in
operator mode. The estimate for the time to pick-up a disk is3.0S (tpicwp), and the
estimate for the time to drop adisk is 1.9'S (tarop)-

Finally, Figure 4.13(a) shows the measured and estimated time to load and un-
load a drive. The estimate isin most cases far above the measured time. The reason
for this is that the time to open and close a drive varies considerably and unpre-
dictably, therefore, we have to use the worst-case times for building the schedules.
Figure 4.13(b) shows the time to open the drive when the drive is empty and |oaded.
The variation in the time to open an empty driveisbig (0.8 s). Figure 4.13(c) shows
the measured timeto close the drive. When the driveis|oaded the variation is nearly
1.5s.

76 Chapter 4. Tertiary-Storage Hardware

0.1

0.08 -
0

0.02

-0.02

Estimated ——
120000

Measured: Forward
Measured: Backward

,
n N o o
o

@mmvw_e_k

05 n

80000

0
Distance

-80000

80000
Distance

40000

0

(b) Error estimate elevator

(a) Elevator

sl
mmmmmmmwwﬁ -

ot

0 8000 16000

Distance

-8000

-16000

0.03

-0.005 -

-0.01 +
-0.015

Measured: Forward
Measured: Backward

Estimated ——

8000 12000 16000

4000

18

Distance

(d) Error estimate rotator

(¢) Rotator

et

oorom?_ozmrooo
3888 38833
Sccococ 99393
(08s) B
dd.m
T &
sz &
5% <
Bt i
i
wm‘
L5
=
@ ® N~ © 1| ¥ 0
o O o o o o o
(08s) a1 L

0 1000 2000
Distance

-1000

-2000

1000 1500 2000

500

Distance

(f) Error estimate retractor

(e) Retractor

Figure 4.10: Comparison between the estimated and measured performance of the motors

for the function motor .tove.

77

4.3 Jukebox Controller

Time (sec)

-0.2 ‘

Horizontal Distance Vertical Distance 0 40 éo 120
(x1000) (x1000) Vertical Position of Destination (x1000)
(8) Measured time to move (b) Error estimate time to move
0.2
Time (sec) 015t
3 01t
2.5 -
> Eﬁ 0.05 R
15 T Of
1 IS
05 =005y
-01 ¢+
-16 -0.15 | B]
. . . . -0.2 : : :
Horizontal Distance Vertical Distance 0 40 80 120
(x1000) (x1000) Vertical Position of Destination (x1000)
(c) Measured time to position (d) Error estimate time to position

Figure 4.11: Comparison between the estimated and measured performance of the robot
for the functions robot.tmove and robot.tposition-

5
dr——— FTrr+t++ T Ftr T AT T v+ T B
£ 1
@
£
F2r —
1 | Measured: Grab * |
Measured: Place x
Estimated: Grab E—
o Estimated: Place o ‘ ‘ ‘
80 85 90 95 100 105 110 115 120
Slot

Figure 4.12: Comparison between the estimated and measured performance of the picker
for the functions tgrap and tpjace.

78 Chapter 4. Tertiary-Storage Hardware

él T T T
Measured: Unload +
26 |- Estimated: Unload . - g
Measured: Load x _pa®”
25 + Estimated: Load = _eee? -
DDDD *
24 + BDDDDDD % *xx * b
23 DDDBDDDDDDDDDDD * %){*x% * *oox
—~ *x*x " * XXy
Bt C P R]
] *x *
g 21 o® 7
= P
g
20 .’..r' B
..»l‘...’ ++++++
19, veese® et i
"‘Oooro-oo"..'”. L
18 - +++++ u
17—+++++++++++++++++ i
16 1 1 1
0 40000 80000 120000 160000
Vertical location slot
(a) Timeto load and unload
11
32 Empty Empty
) L oaded- * Loaded x
3 L x*** xx X o KRy kT R * ¥ ****X**x* “x ** Lo * % *x*
_ 9]) L
g 28| 3
Py o 8
E 26| £
[ool
2.4
6 L
22t
S PSS S SIS S

(b) Measured time to open the drive

(c) Measured timeto close the drive

Figure 4.13: Comparison between the estimated and measured L oad-/Unload-Time. De-
tails of the time to open and close the drive.

4.3 Jukebox Controller

79

4.3 Jukebox Controller

The jukebox controller is the interface to the jukebox hardware that is used by the
jukebox scheduler. It hides the details of the interaction with the hardware and pro-
vides asimple set of functionsthat are hardware independent. The functions offered
are: read, load and unload.

The controller assigns aunique identifier to each RSM in the jukebox. Each RSM
has an associated shelf whereit is stored when not being used. The controller keeps
information about the type of media of each RSM and guarantees that each RSM is
stored in ashelf so that it can be read with at |east one drive. Thisimplies that each
RSM can be loaded and unloaded from at least one drive that can handle that type
of RSM. In turn, the jukebox model guarantees that at |east one robot can load the
RSM in the drive and one robot can unload it.

__ResourceMapping
getShelfNumber : IdentifierRSM — ShelfNumber

getTypeMedium : Identifier RSV — MediaType
jukebox : Jukebox

driveS.eyq : IdentifierRSM — FF Drive
resourceSqyg . ldentifierRSM — F(Drive x Robot)

resourceSynicad - ldentifierRSM — F(Drive x Robot)

Yid : IdentifierRSM e
(let shelf == jukebox.getShelf (getShelfNumber (id)) e
(let media == getTypeMedium(id)
drives.eq(id) =
{drive : Drive|
drive € jukebox.getDrivesReachableFromShelf (shelf) A
(let beh == drive.Behaviors e
Adh : DriveBehaviour e (media, dh) € beh)})) A
resourceSpaq(id) =
{drive : Drive; robot : Robot |
drive € driveSeg(id) A
robot € jukebox.getRobotsThatLoadDrive(drive)} A
r€S0UrCeSynicad(id) =
{drive : Drive; robot : Robot |
drive € driveSeq(id) A
robot € jukebox.getRobotsThatUnloadDrive(drive)}

Vid : IdentifierRSM e 3d : Drive e d € driveS.eq(id)

80 Chapter 4. Tertiary-Storage Hardware

An important functionality of the hardware controller is to keep a consistent view
of the hardware state. The following specification provides the state of each drive.
Using this as a starting point we can also conclude the state of the robots. The
possible states for a drive are: empty, loading, reading, loaded, and unloading. The
loaded state indicates that the drive is loaded, but it is not reading data from the
RSM. If adriveisbusy reading, loading or unloading the specification also indicates
the time at which the drive will become idle again.

DriveSatus ::= Empty | Loading | Reading | Loaded | Unloading

__DriveState
status : DriveStatus
content : IdentifierRSM
t= : Time
offsetLastRead : Offset
robotlnvolved : RobotNumber

(status # Loading A status # Unloading) = robotinvolved = —1
(status # Loaded A status # Reading) = offsetLastRead = -1

__JBSate
getDriveForRSM : IdentifierRSM — DriveNumber

getSate : DriveNumber — DriveState

Vid : IdentifierRSM e
(3dn : DriveNumber o
(let state == getSate(dn) e state.content = id))
= getDriveForRSM(id) = dn A
= (3dn: DriveNumber e
(let state == getSate(dn) e state.content = id))
= getDriveForRSM(id) = -1

4.4 Summary

This chapter presented amodel of tertiary-storage devices, with special emphasison
optical and magneto-optical jukeboxes. The model allows us to describe any type

4.4 Summary 81

of optical and magneto-optical disk and different drive technologies. We limit our
analysisto this type of jukebox and leave out tape jukeboxes, because tapes are not
capable to cope with random access in an efficient manner.

This model isused by the jukebox scheduler to compute the duration of the tasks
that need to be scheduled. It is also used by the jukebox simulator to simulate the
behaviour of the jukebox.

This chapter also discussed the functionality of the jukebox controller, which
guarantees that the view of the jukebox is consistent and all the datain the jukebox
can beread by at least one drive.

82 Chapter 4. Tertiary-Storage Hardware

Chapter 5

Formalization of the Scheduling
Problem

This chapter presents a formalization of the scheduling problem. We present dif-
ferent ways of modelling the scheduling problem and analyze their advantages and
disadvantages. We should like to model the original scheduling problem described
in Section 3.5 using the scheduling theory presented in Section 2.1. However, we
could not find a model that captures all the problem variables, because there is a
conflict when deciding when to switch RSM given that the robots may be shared
resources. Under the restriction of shared robots, there is no way to represent the
option to either interrupt reading from an RSM and unload it or continue reading.

Therefore, we simplify the original scheduling problem in order to make it de-
scribable by scheduling theory. We present several alternatives that either restrict
the way the request units are clustered, or simplify the hardware model.

The most flexible of the modelsis the fixed switching model, which only requires
the way in which the request units are clustered to be predefined. The optimal model
is obtained by clustering the request unitsin all possible ways. A solution of the op-
timal model isthe optimal solution to the scheduling problem, however this solution
can not be computed in polynomial time.

We show that there is one simple way of clustering the request units that makes
good use of the jukebox resources and results in a simpler scheduling problem.
If we cluster al request units for an RSM in one job, the number of switches is
minimized, which, in the long run results in good performance. We call this model
the minimum switching model.

We prove in this chapter that the scheduling problem is NP-hard and that all our
simplifications of the original scheduling problem are NP-hard as well.

83

Optimal 1} . | Optimal
Scheduler |/ simplified Model
hardware model, o
and request model fixed simplified
clustering hardware model
of RUs
A
Fixed Dedicated Robots

1 job per RSM +

Switching Model

Model

1 job per request +
simplified

simplified resource usage,
hardware model 1 job per RU hardware model,
and request model
A
______ Minimum Switching Imperative Periodic
il Model ™. Switching Model Quantum Model
A
simplified

Extended

Strategy

Conservative |

resource usage, and
hardware model

.. simplified
“.request model

Jukebox
Early

Quantum
Scheduler

v Fully
Staged

Extended
Aggressive
Strategy

Extended
Switch-Read Model

Before
Starting

simplified
hardware model

A 4
Lau's Switch-Read
Model

/Aggressive &
Conservative
Strategies

Figure 5.1: Scheduling-problem models and the schedulers that use them. The full ar-
rows represent simplifications performed to the scheduling problem. The circles represent
schedulers. The schedulers are attached to the model they are based on.

5.1 Model Hierarchy

When determining the parameters of the jobs to schedule, we need to know in ad-
vance which type of shared resources are needed to execute the job. We have three
types of shared resources in the jukebox: drives, robots, and RSM. The scheduler
must deal with three types of operations: read, load, and unload. Every operation
involves a drive and an RSM, but only the load and unload operations involve a
robot.

The conflict when trying to represent the scheduling problem using scheduling
theory is that the optimal scheduler should be able to decide after scheduling the
read of each request unit, whether more data must be read from the same RSM.

84 Chapter 5. Formalization of the Scheduling Problem

However, leaving the RSM in the drive does not require scheduling the use of the
robots, while unloading the RSM does. Therefore, if we do not know in advance the
sequencein which the request unitswill be read, we cannot determinein advance the
parameters needed to represent the jobs. We call this conflict the switch/no-switch
conflict.

We propose two solutions to solve the switch/no-switch conflict (first branching
in Figure 5.1). One solution is to determine in advance how to group the request
units corresponding to the same RSM. We divide the request units into subsets and
for each subset we create ajob that involves aload, aread and an unload. In thisway
we determine resource needs for the jobs in advance. Therefore, we call this model
the fixed switching model. Section 5.2 presents this model in detail. As shown in
Figure 5.1, we have refined this model into other models that define how to cluster
the request units.

Another solution, which we call the dedicated robots model is to assume that
the robots are dedicated resources, i.e., there is one robot to serve each drive. A
scheduler using this model does not need to schedul e the robots separately from the
drives, because there are no possible conflicts in the use of the robots. Therefore,
the scheduler can decide to go on reading from the same RSM or to switch RSM
while building the schedule. Section 5.7 presents this model in detail.

The assumption made for the dedicated robot model is too restrictive to be used
for scheduling ajukebox because jukeboxesin general do not have dedicated robots.
Thus, we did not implement ajukebox schedul er based on this model. However, this
model may be useful in a manufacturing environment, where it is more plausible
that there is a dedicated robot serving each machine.

The fixed switching model is the model that imposes fewer restrictions on the
origina scheduling problem. Using the fixed switching model we build the opti-
mal model. The optimal model represents all the possible ways of grouping the re-
guest units into jobs that can be handled by the fixed switching model. By refining
the fixed switching model we obtain different models for which efficient heuristic
schedulers can be built.

The minimum switching model is a specia case of the fixed switching model in
which there is one job per RSM. This model requires that al the requested data
from an RSM must be read before the RSM is unloaded from a drive. The name of
the model derives from the fact that a feasible schedule built using this model will
have the minimum possible numbers of RSM switches. This model eliminates the
possibility of using the robot to unload an RSM before all the requested data from
that RSM has been read. Section 5.3 presents this model in detail.

We believe that the minimum switching model is the most flexible model that
permits to build efficient polynomial heuristic algorithms to solve the scheduling
problem. Promote-IT is based on this model. The extended conservative strategy

5.1 Model Hierarchy 85

also uses this model, because as we explained in Section 2.2.1 the strategy cannot
use a flexible flow shop with two stages and at the same time handle non-constant
load and unload times. As shown in Figure 5.1, the Fully-Staged-Before-Starting
(FSBS) scheduler also uses this model, but it assumes that all the request units of a
request have the same delta deadline.

The switch-read model used by Lau et a. for the conservative and aggressive
strategies (see Section 2.2.1) is a specia case of the minimum switching model
with strong restrictions on the jukebox architecture and the use of the resources.
The switch-read model couples the unload and the load of a drive into one task.
Additionally, the model assumes that all drives are identical and that the load and
unload time is constant—independently of the shelf, drive, and RSM involved. Sec-
tion 5.4 presents aformalization of this model. Although this formalization was not
provided by Lau et al., we consider it important to present, because it showsthat the
scheduling model used by Lau et a. is different and much more restricted than the
minimum switching model.

The extended switch-read model rel axes some restrictions on the hardware model
to be able to handle non-identical drives, variable load and unload time and multi-
ple robots. The extended aggressive strategy is based on the extended switch-read
model.

The imperative switching model is another special case of the fixed switching
model for which there is one job per request unit in 2. The model requires that the
RSM should be loaded, read and unloaded for every request unit. The name of the
model is due to the fact the model requires the scheduler to switch RSM for each
request unit. Each request unit is processed independently from the others. So, for
each request unit, the RSM isloaded, the datais read and the RSM isunloaded. This
model does not permit to keep an RSM loaded in a drive even if there are multiple
request units for it. Thus, it prevents building schedules that can make an efficient
use of the drives and the robots, because the drives cannot read as much data as
possible from an RSM beforeit isunloaded. Section 5.5 briefly presentsthis model.
We did not implement any scheduler for this model, because the utilization of the
resources is clearly very poor.

The periodic quantum model isanother special case of the fixed switching model.
The jobs are represented as periodic tasks. There is one such periodic task for each
request ry arriving at the scheduler. In this model the resources are used in a cyclic
way. The robot switches the RSM in the drives at fixed intervals. The drives read
datafrom an RSM during afraction of the cycle, while the robot is serving the other
drives. This model can only be used when all requests are for continuous-media,
which is stored contiguously in one RSM. Section 5.6 presents this model. The
jukebox early quantum scheduler (JEQS) is based on this model.

86 Chapter 5. Formalization of the Scheduling Problem

Load Stage Read Stage Unload Stage

Rl \ 9 Rl

Pq
X
D
Rz ””' ° \ R2

Figure 5.2: Model of a Jukebox as Flexible Flow Shop with Three Stages. The jukebox
has 4 drives and 2 robots, which are capable of loading and unloading all the drives.

As presented in Section 3.5 the scheduling problem model is constructed for each
candidate starting time. Therefore, we build a scheduling problem for the set U’
under the following conditions:

7/[, = 7/{ U {ulkl, uf(z’ cr u,klk} A

The schedule is computed at time t,.

5.2 Fixed Switching Model

The processor environment of the fixed switching model is a flexible flow shop with
three stages (FF3). Thefirst stage isto load an RSM to a drive, the second stage is
to read the data from an RSM and the third is to unload the RSM. The jobs to be
processed are of the form J; = {Ty;, Ty, Ty}, with one task for each stage.

Figure 5.2 shows an example of ajukebox with 4 drives and 2 robots. Both robots
can serve al thedrives. Thefull line represents a possible assignment to ajob, using
R; to load, D, to read and R, to unload. At the same time another job, represented
by the dotted line, is executed using R,, D3 and R;.

The processing time of areading task Ty is determined by computing a separate
scheduler for all request units that are grouped into J;. We call this schedule for an
RSM aMedium Schedule (MS). An M S determines in which order the data must be
read once the RSM isin the drive. As the drives may be non-identical, we compute

5.2 Fixed Switching Model 87

a separate M S for each drive. The optimization criterion for an MS is to maximize
thetime at which the RSM hasto be loaded in adriveto start reading datafromit, in
such away that the deadlines of the request units are met. In other words we want to
determine the latest possible starting time of the read. If the RSM is already |oaded
in adrive, the goal isto read the requested data before the RSM must be unloaded.
We provide the details of the model to build the MS in Subsection 5.2.4.

Any algorithm based on the fixed switching model must compute the schedule
in two stages. In thefirst stage, the algorithm computes the medium schedules cor-
responding to each job J;. As aresult, the algorithm establishes the values of the
processing times and deadlines of the reading tasks T,;. In the second stage, it as-
signs resources—robots and drives—to each job.

This model does not impose restrictions on the hardware model. It can even han-
dle double-sided disks that need to be turned. We model double-sided disks as two
different RSM that have a shared resource in common. This shared resource cor-
responds to the disk. Therefore, the request units for each side will always be on
different jobs. By using the disks as shared resources, we indicate that mutual ex-
clusion is needed on jobs involving the same disk.

Aswediscussed in Section 4.2.3, both the drives and robots may all have different
characteristics. Therefore, the processors at each stage are modelled as unrelated. In
thefirst stage there are | processors representing to the | loader robots. In the second
stage there are m processors representing the drives. In the third stage there are u
processors representing the unloader robots. The robots in the first and third stage
may have some elements in common and in the worst case all the elements will be
the same: when all robots are able to load and unload.

We assume that the drives are involved in the whole activity of being loaded or
unloaded in such away that adrive cannot read datafrom an RSM during that time.*
The load and unload of a drive require alock on the drive, which we will represent
as additional resources. Because the robots can be shared, we need to specify that a
robot cannot be used for aload and an unload simultaneously. We do this, as well,
by using additional resources.

A schedule built for this model consists of m drive schedules Dy, ..., Dy and r
robot schedules Ry, . . ., R, wherer isthe number of different robotsin the jukebox.
Thus, r <1 +u.

In the model there are no buffers between the processors and this may lead to
blocking (see Section 2.1.1), given that an RSM can be only in a shelf, in arobot or
in adrive. Although there are no additional buffers where the RSM can be placed
once the processing on a stage finishes and the processing on the next stage be-

1 Subsection 5.2.5 presents an extension to the model for the case when the drives are not involved
in the whole load and unload operations.

88 Chapter 5. Formalization of the Scheduling Problem

R, [T1a| Ti2 LEP) Tiz [aqTaa Taa| Ta3

D, LEP LPY) LEP Tis Tas L

N drive waiting

D, Ti1 Ty, To1Toa|Toal Tas for shared robot

Figure 5.3: Example showing how the jobs can interleave in the use of the robot, but not
in the use of the drives.

gins, an RSM can stay loaded in a drive even if the drive is not reading data from
it. So, there is no restriction indicating that immediately after a drive is loaded the
reading must begin or immediately after the reading finishes the RSM must be un-
loaded. Another consequence of the absence of buffersisthat the tasks of different
jobs cannot interleave in the use of a drive. However, tasks from different jobs can
interleave in the use of the robots.

Figure 5.3 shows how tasks interleave in the robot schedule R;, while the drives
are blocked waiting to be unloaded. While D, isreading the data of T, ;, R, executes
T12, T3 and Ty 3, all tasks involving D;. When D, finishes executing T, it has to
wait until the robot becomesidliein order to be unloaded.

The model uses the jukebox state information provided by the jukebox controller
(see Section 4.3) to determine the state of the drives and robots. When an RSM is
being unloaded from a drive and there are request units in ¢4’ for that RSM, we
cannot stop the active unload. Thus, we must first wait until the RSM is completely
unloaded to be able to load the RSM again in a drive and read the requested data
fromit.

5.2.1 Problem Formalization

We model the problem as
FFs|dj,r,Mj,res. 11| -

The machine environment is a flexible flow shop with three stages (FF3). The jobs
have deadlines (dj), release times (r;), machine eligibility restrictions (M;) and re-
source constraints (res. 1 1). The optimization criterion isto find afeasible schedule
()

At each stage of the FF3 there are unrelated parallel processors. The set of pro-
cessors at the first stage is the set R, of loading robots. The set of processors at the

5.2 Fixed Switching Model 89

second stage isthe set D of drives. The set of processors at the third stage is the set
Ry of unloading robots. If there are robots capable of loading and unloading, asis
in general the case in jukeboxes, then the intersection between the set of processors
of thefirst and third stage is not empty (R N R, # 9).

Having a non-empty intersection between the processor sets on the different
stages is a special feature of our flexible flow shop problem. We need to guaran-
tee mutual exclusion in the used of the robots belonging to the first and third stage.
We use resource constraints to indicate the presence of shared resources. We use a
shared object to indicate each drive, robot, RSM, and disk in the case of double-
sided disks. The first parameter of the resource constraints indicates that there are
many resource types. The second parameter of the resource constraints indicates
that there is one resource of each type and the third parameter indicates that a task
may need at most one resource of each type.

Because the robots may be limited to serve only a subset of drives and shelves,
there are job that can be executed only in a subset of resources. In the model we
indicate this by using machine eligibility restrictions.

The optimization criterion is feasibility, because all the request unitsin U’ have
fixed deadlines.

5.2.2 Job Parameters

We now define the parameters of each of the tasks of a job. We assume that J; is
a job corresponding to the RSM that is stored in shelf x. The type of the RSM is
type,. We obtain these parameters from the hardware controller using the functions
getShelfNumber and getTypeMedium, respectively.

The load task T has the following parameters:

e The matrix of processing times (py;) indicates the time it takes to load the
RSM in each drive with each robot. Thus, py1; denotesthetimeit takesto load
the RSM with robot k into drive i. We obtain these values from the jukebox
model.

tioad(L, L, X, type,) ... tioad(1, M X, type)
Py = :
tioad(l, L X, typ8) ... ticad(l, M X, type,)

e Thedeadline (d,;) indicates the time by which the load must finish.

e The release time (ry;) indicates the earliest time at which the load can begin.

90 Chapter 5. Formalization of the Scheduling Problem

e The machine eligibility restrictions (M,;) indicate that the load can only be
executed by agiven set of robots and drives. This parameter is obtained from
the hardware controller using the function resourcespag.

e The resource constraints (RC;) indicate the resources involved in the oper-
ation. It includes the robot and drive to use, which must be one of the tuples
of My;. It also includes the RSM involved (x) and the shared resource repre-
senting the disk when handling double-sided disks.

The read task T»; has the following parameters:

e The vector of processing times (;) indicates the time it takes to read the
data from the RSM with each drive. This parameter derives from the compu-
tation of the medium schedules corresponding to the RSM. The time needed
to read the data with drivei is piy.

e The vector of deadlines (d; ;) indicates the time by which the data must be
in secondary storage when reading the data with the different drives. This
parameter also derives from the computation of the medium schedules corre-
sponding to the RSM. The deadline for drivei is diy.

e The release time (ry;) indicates the earliest time at which the read can begin.

e The machine eligibility restrictions (My;) indicate that the load can only
be executed by a given set of drives. The set of drives is obtained from the
hardware controller using the function drives eag.

e The resource constraints (RC,;) indicate the drive to use. The drive must be
in My. It also includes the RSM involved (x) and the shared resource repre-
senting the disk when handling double-sided disks.

Theunload task Ts; has the following parameters:

e The matrix of processing times (ps;j) indicates the time it takes to unload
the RSM from each drive with each robot. We obtain these values from the
jukebox model. The time needed to unload the RSM from drive i with robot

kis Pxis; -

tunioad(L L X, type) ... tunioad(1, M, X, type,)
P3 = :
tunload(U, 1, X, typex) o tunload(ua m, X, typex)

5.2 Fixed Switching Model 91

e Thedeadline (agj) indicates the time by which the unload has to finish.

e The machine eligibility restrictions (Ms;) indicate that the unload can be
executed only by a given set of robots and drives. This parameter is obtained
from the hardware controller using the function resourcesnjoag-

e The resource constraints (RC;;) indicate the resources involved in the oper-
ation. Itincludestherobot and drive to use, which must be one of the tuples of
M. It also includes the RSM involved (x) and the disk object corresponding
to the RSM when handling double-sided disks.

5.2.3 Complexity Analysis

The fixed switching scheduling problem is NP-hard. We prove this by performing
simplifications to the problem and showing that even the smpler versions of the
problem are NP-hard.

A specia case of this scheduling problem is obtained by removing the unload
stage. Now the deadlines of the read tasks coincide with the deadlines of the job.
The problem can be simplified even more by assuming that drives and robots are
identical processors instead of unrelated processors. We can also define the load-
time to be the same for every drive. These simplifications reduce the vector of pro-
cessing times, the vector of deadlines and the matrix py; of Ty to single values. We
can also assume that all the robots can serve al the drives, thus removing the M,
parameter. We can safely do this using the fact that @ o« M;? [83, page 20]. We
can further model the deadlines as due-date times and obtain a due-date problem
FF3|res. 11| Lyax With Ligy < 0.

From the complexity hierarchy for optimality criteria shown in Figure 5.4 [83]
derives that

FFSlreS]-]-'Lmax (o FF3|a,-,rJ-,M,-,res.11|—

We can further simplify the problem by assuming that there is only one drive and
one arm and that we permit to start loading a drive while it is reading. In this way
we eliminate the resource constraints and we can model the processor environment
as asimple flow shop with two machines.

Foll Lmex o FFsz|res. 11| Lyux

ANd Fy || Ly € NP-hard [65] so FF3 | di, rj, Mj, res. 11| — € NP-hard.

2 The symbol « represents a polynomial transformation or reduction. P; o< P, meansthat P; can be
reduced to P,. Thus, if P, is NP-hard, then P, isalso NP-hard.

92 Chapter 5. Formalization of the Scheduling Problem

ZWJ-T]- Eij U J-
e L rrx
Cmax

Figure 5.4: Complexity hierarchy of the optimality criteria.

5.2.4 Medium Schedule

The parameters of the read tasks T, are obtained from computing the medium
schedules. We compute a medium schedule for each job in 7 and each drive in
the jukebox. We, thus, obtain the parameters of the vector of processor times and
deadlines of the reading tasks.

A medium schedule (MS) determines how the data requested from an RSM must
be read. The tasks to include in the MS derive from the request unitsin U’ corre-
sponding to the RSM. If there is an intersection in the data requested by different
request units, we first subdivide them into request units without intersections and
compute the deadline for each of the new request units.

Each task needs time to transfer the data, which we represent as the duration of
the task, and time to go to the next task, which we represent as sequence-dependent
setup times. Additionally, each task has a deadline indicating the time by which the
data of the request unit should be fully staged and arelease time indicating the time
when the transfer of data may begin.

By assigning a constant value R to the release time, we can compute the schedule
for different release times. The goal of the scheduler is to find the biggest value of
R that makes the set of tasks feasible. We call this value of R the latest starting time
(LST) of the MS. The bigger the value of the LST, the later the corresponding read
task T, needsto start. We compute the deadline of T using drivei (aiz,-) asthe LST
of the M S plus the total time needed to read the requested data. Thus, the larger the
value of the LST is, the more flexibility for including the job J; in the schedule.

The model of the scheduling problem to solveis

1ir=Rd.s |-

5.2 Fixed Switching Model 93

This model is a specia case of the asymmetric travelling salesman problem with
time windows (TSPTW) [8, 81] for which al r; = R. It is NP-hard because the
travelling salesman problemis a special case of it whenr; = 0, p; = 0 and a,- =0.

When the RSM s loaded, we do not need to maximize the value of R, but just
find afeasible schedule for R = ry. Thisvalue of Ris the earliest time at which the
reading of the data can begin. Even in this case the problem is NP-hard.

The set of tasksto scheduleis 7. Let D be the drive for which the MSis computed.
The generic task T)—for datain RSM x—nhas the following parameters:

e Theduration (p;) indicatesthetimeit takesto transfer the data of the request
unit with the drive D. We use the function defined in the jukebox model to
compute the transfer time (p; = tyanser (D, type,, 0}, S))-

e The deadline (d ;) indicates time by which the data of the request unit must
be staged.

e The release time (r;) indicates the earliest time at which the data of the re-
quest unit can begin to be staged.

e The sequence-dependent setup times (s;x) indicate the time to go from the
last byte of T; to thefirst byte of Ty. We use the function defined in the jukebox
model to compute the accesstime (Sk = taccess(D, typey, 0; + S, 0k)).

We define an extra task Ty to define the setup time of the first task in the
schedule and the time is computed as Sy = taccess(D, type,, Oiniial, 0j), Where
Oinitial FEPresentsthe initial position of the reading head on the RSM when the
RSM isloaded into adrive.

5.2.5 Model Extension for Partially Blocking Loads and
Unloads

For completeness, we present an extension of the problem model for the case when
the drives are not involved in the whole load and unload operations, but only in part
of them. This can be the case when the robots perform most of the RSM movement
independently of the drive. We do not further work with this extension of the prob-
lem, because we do not take into account this type of jukeboxes in the hardware
model.

In this extended model the jobs consist of fivetasks Ty, . . ., Ts;. Tqj representsthe
part of the load that does not involve the drive, T, represents the part of the load
that involves the drive, Ty isthe read, T, isthe part of the unload that involves the
drive and Ts; is the part of the unload that does not involve the drive.

9 Chapter 5. Formalization of the Scheduling Problem

Ty and Ty need the same robot R and, thus, include it as a resource constraint.
Additionally, T, also needs the drive D, and includes it as well as a resource con-
straint. T4 needs both the drive D, and arobot for the unload R,. Finally Ts; needs
the same robot as T, and, thus, includes it as a resource constraint.

Such amodel allows some superposition between loads and reads, and reads and
unloads. A drive can start reading while the last part of the unload is still being
executed. If there are multiple robots or the robots have a dual-picker, a drive can
go on reading from the RSM loaded, while the robot is executing the first part of
the next load corresponding to the drive.

5.3 Minimum Switching Model

The minimum switching model isaspecial case of the fixed switching model, which
has one job for each RSM with request units that need scheduling. This model
imposes the restriction that all the data requested from an RSM must be read before
the RSM is unloaded. However, given the high switching time, it makes good sense
to read all data of an RSM without unnecessary switches. In Section 2.2.4 we have
shown that thisis a good way to use the jukebox resources efficiently. Promote-IT
is based on this model and in Chapter 9 we show that Promote-IT is an efficient
heuristic scheduler.

Thismodel determines exactly what jobs need to be in the set of jobsto schedule.
Thereisonejob in g for each RSM that satisfies one of the following conditions:

1. The RSM has request unitsin U’.

2. The RSM isin adrive—loading, loaded or reading—and there are no request
unitsin U’ for the RSM.

3. The RSM isbeing unloaded from a drive.

If there are request unitsin ¢’ for an RSM that isloaded or being loaded in adrive,
we read the data corresponding to those request units before the RSM is unloaded.
This makes good use of the fact that the RSM is already |oaded in adrive. However,
it may lead to an unfeasible schedule if the RSM cannot be kept longer in the drive
without making other RSM miss their deadlines.

When an RSM s being unloaded from a drive and there are request unitsin U’
for that RSM, we cannot stop the active unload. Thus, we must first wait until the
RSM is completely unloaded to be able to load the RSM again in a drive and read
the requested data from it.

As aresult of these rules, in the general case, there is at most one job for every
RSM in the jukebox. The exception is given by the RSM that are being unloaded

5.3 Minimum Switching Model 95

Parameter Load Task Ty; | Read Task Ty | Unload Task Tj;
Processing time Prizj (%) Pi2j (*) Prisj (*)
Deadline alj diz j aSj
Release time ryj ro
Machine eligibility restrictions My (*) Maj (*) Msj (*)
Resource constraints RCy RCy RCy

Table 5.1: Parameters of the job tasks of the minimum switching model. A sub-index i
indicates a drive and a sub-index k indicates a robot. The parameters marked with (*) are
awaysinitialized.

by the robots at the time of building the schedule and have request units for themin
U’. In this case there are two jobs for the RSM, one representing the request units
that need reading (condition 1) and another for the unload under way (condition 3).

The goal of having at most one job per RSM isto eliminate the need to check for
mutual exclusion on the use of the RSM. To achieve this goal, we need to impose
the restriction that the RSM are not double-sided disks. When using double-sided
disks, we still should have to check for mutual exclusion on the use of the disks. We
believe, that this restriction on the hardware model is not really important, because
in order to make double-sided disks succeed in the market, the drives will have to
be able to read double-sided disks without turning them over. We have already seen
these two technological stepsin the early days with floppy disks.

The minimum switching model—like the fixed switching model from whom it
derives—has the peculiarity that the deadlines are specified for the reading tasks
and not for the jobs. The unloads can be delayed as long as the drive is not needed
for another task. Table 5.1 shows all the parameters of the jobs and indicate which
parameters are aways initialized at the beginning of the computation. Because the
RSM are not double-sided, so we do not need to include the RSM and disk in the
resource constraint parameters.

Parameter initialization

We now define how the parameters are initialized. We want to guarantee that the
tasks that are already active are assigned the correct resources, i.e., the same re-
sources on which they are executing. We set the resource constraints in such away
that no other device can be used for the tasks already executing and that the deadline
of the active task coincides with the time at which the task should finish executing.

We show the initialization of the job parameters for the three special cases that
derive from a busy drive. We obtain the values from the hardware controller.

96 Chapter 5. Formalization of the Scheduling Problem

If J; corresponds to RSM X that is being loaded into drive i by robot k, and t; is
the time remaining to finish the load, do the following:

1. Add the drive and the robot to the resource constraints of the load tasks, be-
cause the load should be assigned to the same drive and robot in which it is
currently active. RCy; = (Di, Ry).

2. Set the processing time of the load task to the remaining timeto finish theload
. (P =) AVVXMILSXSTAXEKATEYALLSYSM: Pygj =).

3. §et the deadline of the load task to the time when the load should finish.
d]_j =to+t.

4. Set the resource constraints of the read task to D; to make sure that the read
task isassigned to D;. RCy = (D, -).

5. Add D; to the resource constraints of the unload task to make sure that the
unload is done from D;. RC3 = (D,).

If J; corresponds to RSM x, which is loaded in drive i—either reading or idle—and
t, isthe time at which the read will finish, do the following:

1. Setthereleasetime of theread task to the time at which the read that the drive
is performing should finish. If the driveisidle, thent, = ty. ry = t;.

2. Add D; to the resource constraints of the three tasks. RCy; = RCyj = RCy =
(D,).

3. Indicate that the load task does not need to be performed by setting the pro-
cessing timeto O.

If RSM X isbeing unloaded from drivei by robot k, thereisajob J, to represent the
unload, and t, is the time remaining to finish the unload, set the parameters of J, to
the following values:

1. Add the drive and the robot to the resource constraints of the unload tasks,
because the unload should be assigned to the same drive and robot in which
itis currently active. RC3 = (D;, Ry).

2. Set the processing time of the unload task to the time needed to finish unload-
ing the RSM. (Puizu = tu) A (VX Y[1<X<SUAXZEKAYy#IALl<y<m:
Pyg = ©).

3. Set the deadline of the unload task to the time by which the unload should
finish. dg = t,.

5.3 Minimum Switching Model 97

RU | Deadline RSM Offset Size Bandwidth
(seconds) | ldentifier | (KB) (KB) (Kbps)
Ur1 50 10 60 | 204800 1024
Upo 210 10 | 204860 | 409600 1024
Ug1 150 300 200 | 102400 0
Up2 150 300 | 204800 | 51200 0
Uss 20 300 | 409600 | 204800 512
Us1 180 720 60 | 409600 2048
Ug2 180 3 | 614400 | 15360 128

Table 5.2: Request unitsin U’ for the example of the minimum switching model.

R, Tia| Tsd Ti2 LEP Tz e Tas
D, Toullsd Ti2 Ta2 LEP Tis Tas Tss
22.130.6 50.6 86.3 101.3 131.3 1715
D, LW Taa Tsq
12 102.2

Figure 5.5: A feasible schedule for the example of the minimum switching model.

4. Indicate that the load and read tasks do not need to be executed by setting the
processing timeto 0.

Additionally if there are request units for RSM x in U’, then there is another job J;
corresponding to the data that needs to be read from the RSM. If such ajob J; exists,
then the model must guarantee that J; is only scheduled after J, finishes. Thus, the
precedence constraint J, — J; must hold in any feasible schedule that is built. To
guarantee this, we set the release time of the load task of J; to the time at which the
unload finishes (ry; = ty).

5.3.1 Example

We illustrate now with an example how a set of request units ¢’ (shown in Ta-
ble 5.2) is transformed into an instance | of the minimum switching model (shown
in Tables 5.4 and 5.5). Figure 5.5 shows a feasible schedul e built for the resulting |.

The jukebox has two drives and a shared robot. The drives have different charac-
teristics. The functions shown in Table 5.3 determine the hardware behaviour. The
functions are very simple; we assume, for example, that the access time does not
depend on the offset of the data.

98 Chapter 5. Formalization of the Scheduling Problem

Function d=1 d=2

tiranster (d, CD, 0, Size) size/(10 = 1024) Size/(6.66 + 1024)
taccess(d, CD, 0s, 0q) 0.2+ | 04 — 0s | /1024 % 0.002 | 0.1+ | 0g — Os | /1024 % 0.001
tioad(r, d, sh, CD) 10 + 0.5 * (sh mod 40) 7 + 0.5 = (sh mod 40)
tunload(r, d, sh, CD) 5+ 0.5 (sh mod 40) 4 + 0.5 * (sh mod 40)

Table 5.3: Functions for the hardware model of the examples in this chapter.

Job | RSM | Release | Tasks | Deadline Drive 1 Drive 2
Pi Sk Pi Sk
Ji 10 T 50 20 [0,0.2] 30 [0,0.1]
T, 210 40 [0.6,0] 60 [0.3,0]
T, 150 10 | [0,0.4,0.8] 15 [0,0.2,0.4]
Jo 300 T, 150 5 |[0.7,0,0.5] || 7.5 | [0.35,0,0.25]
T3 90 20 | [14.1,Q] 30 [0.7,0.5,0]
J3 720 T 180 40 [Q] 60 [Q]
Js 3 20 T 180 15 [Q] 2.25 [Q]

Table 5.4: Datato build the medium schedules for the example of the minimum switching
model.

The state of the jukebox is the following. Drive 1 is loaded with RSM 3 and the
drive is busy reading data from it for another 20 seconds. Drive 2 is empty. We
assume that Drive 1 is reading the first 200 MB of data from RSM 3, so the time
needed to go from the position in the RSM to the one required by J, is 0.6s.

There are four jobs that need scheduling, corresponding to the four RSM with
requests. The RSM of the last job (J4) coincides with the RSM loaded in Drive 1.
Table 5.4 shows the mapping of the RSM to the jobs and the data used to build the
medium schedules for each job. Figure 5.6 shows the medium schedules built for
jobs J; and J, using both drives. The medium schedules of J; and J4 are trivial.

Table 5.5 showsthe data of the jobsto schedule. Only job J, hasadrive constraint
indicating that the read must be processed in D1, because the RSM is already |oaded
in that drive. Figure 5.5 shows a feasible schedule for the job set.

5.4 Lau’s Switch-Read Model

Using the description of the aggressive and conservative strategies provided by Lau
et al. [61, 63] we formalize the scheduling-problem model on which their sched-
uler is based. The goal of presenting this formalization is two-folded. On the one
hand, we show that their scheduling-problem model is different from the minimum

54 Lau's Switch-Read Model 99

Job Load (Tyj) Read (Ty;) Unload (T3j)
Ji P11 = [15, 12] ~p2,1 = [604, 902] P31 = [10, 9]
dz1 =[90.2,110, 1]
Jo | P2=1[20,17] | p22=[35.7,53.35] | ps2=][15,14]
dy» = [105.5,113.25]
J3 P13 = [30, 27] p~23 = [40.2, 60.1] P33 = [25, 24]
dy.3 = [180, 180]

Ja | Pra=1[0,09] P24 =1[21,09] P34 = [8.5,5.9]
dia = [0,0] &4 = [180, 180]
o4 = 20

RC14 = (D1,-) RCu4 = (D1,-) RCu4 = (D1,-)

Table 5.5: Jobsto schedule in the example of the minimum switching model.

o |Drivel Ty T2
—
s 29,8 50 90.2
&

Drive 2 T T,

19,9 50 110.1

g |Drivel Ts II'2 Ty
o™ T
s 69.8 90 105,5
&

Drive 2 T3 Tz T1

59.9 90 113.25

Figure 5.6: Medium schedules for J; and J, for the example of the minimum switching
model. For each job the medium schedule built with Drive 1 and Drive 2 are different.

switching model. On the other hand, we show that the switch-read model puts un-
necessary restrictions on the way that the resources are used by coupling the unload
and load operations into a single switch operation. Using the switch operation has
as consequence that the drives stay loaded until they are needed again. Therefore,
before reading data from a new RSM, the robot must always unload the drive first
and then load it with a new RSM, even if the robot and the drives had been idle
before the request arrived. In Chapter 9 we show that using a switch operation has
a negative influence on the performance of the jukebox scheduler.

The processor environment of the switch-read model is a flexible flow shop with
two stages (FF,). Thefirst stage isto switch the RSM loaded in adrive and the sec-
ond stage is to read the data from the RSM. The switch stage comprises unloading
and immediately loading adrive. An RSM stays loaded in a drive until the driveis

100 Chapter 5. Formalization of the Scheduling Problem

needed for another RSM. The jobs to be processed are of the form J; = {Ty;, Ty},
with one task for each stage.

Like the minimum switching model, this model imposes the restriction that all
data requested from an RSM must be read before the RSM is unloaded. This model
also uses the concept of the medium schedule as presented in Subsection 5.2.4 for
the minimum switching model.

Additionally, this model imposes these restrictions on the hardware model:

e |dentical drives

e Constant switch time, independently of the drive, robot, shelf and type of
RSM involved

e Onerobot

The problem isformalized as
FF, | dj,r.res. 11| -

The machine environment is atwo stage flexible flow shop. The first stage has only
one processor that represents the robot. The second stage has m identical proces-
sors representing the drives. The jobs have deadlines, release times, and resource
constraints.

As in the case of the minimum switching model, the problem can be simplified
to a simple flow shop with two machines. Therefore, this scheduling problem is
NP-hard, as well.

5.4.1 Job parameters
We now define the parameters of each of the tasks of ajob J;.
The switch task T has the following parameters:

e The processing time (p;j) is aconstant time tgyitn indicating the duration of
the switch.

e Thedeadline (dy;) indicates time by which the switch must finish.

e The release time (rq;) indicates the earliest time at which the switch can
begin.

e The resource constraints (RC;) indicate the drive to use.

54 Lau's Switch-Read Model 101

The read task T,; has the following parameters:

e The processing time (p;) indicates the time to read the data. This parameter
derives from the computation of the medium schedule corresponding to the
RSM. Note that it is a scalar and not a vector as in the minimum switching
model.

e Thedeadline (d; i) indicates the time by which the data must be in secondary
storage. Note that it is a scalar and not a vector as in the minimum switching
model.

e The release time (ry;) indicates the earliest time at which the read can begin.

e Theresource constraints (RCy;) indicate the drive to use.

5.4.2 Extended Switch-Read Model

We have extended the switch-read model to amodel that is more flexiblein the type
of hardware it can handle. The extended model can deal with non-identical drives,
variable switch times, and multiple robots. However, it cannot deal with robots that
have a limited scope or functionality. The switch operation must be performed by
the same robot. Therefore, the robot must be able to unload the drive, moving the
RSM to its corresponding shelf, and load the drive with the new RSM.

5.5 Imperative Switching Model

The imperative switching model isanother special case of the fixed switching model
where each request unit in U’ is a separate job in J. Consequently no medium
schedule needs to be computed, because each request unit is read separately.

This model makes inefficient use of the resources, especially if the request units
are small and there are multiple request unitsfor the same RSM. In jukeboxeswhere
the drives are much faster than the robot, the minimum switching model has even a
bigger advantage over the imperative switching model. It is easy to see that the ex-
ample shown for the minimum switching model is not schedul able with this model.

5.6 Periodic Quantum Model

In the periodic quantum model the robots and drives are used according to a pre-
determined cycle. The robot first unloads Drive 1 and loads it with another RSM.
Then it does the same for Drive 2, and so on until al drives have been served and

102 Chapter 5. Formalization of the Scheduling Problem

Ryluftjufrjufrfufefufejufejufefufefulfe]

D, U L] R U L] R KRS
Q Q
D, R _|u L] R | U L] R |
Q Q
D, | R [u L] R LU L] R |
Q
D, | R U L] R lu L] R |
Q

Figure 5.7: Cyclic Use of the Resources.

the cycle starts again at Drive 1. Figure 5.7 shows the cycle for a jukebox with four
drives and one robot.

Astherobot is used in a predetermined way, we do not need to compute a sched-
ulefor it. Thisway of using the robot guarantees that the use of the robot causes no
resource-contention problems, because we know exactly when a robot can be used
to serve adrive.

We define a guantum Q as the time needed to complete a cycle:

load

We use quantum tasks to represent the user requests. Using quantum tasks [10] has
the advantage that although the tasks are non-preemptable, they can be treated as
preemptable during the feasibility analysis. The only condition is that the release
times of the tasks scheduled on drive i always coincide with the beginning of a
cyclefor drive i. We can guarantee that the release times of the tasks always fall at
the beginning of acycle, if the release time of thefirst instanceis at the beginning of
acycle, because the period of the tasks are multiples of Q. Therefore, atask which
is executing in adrive never needs to be preempted.

An RSM isloaded in adrive for afixed period of time. During this time the drive
can read data from it. The model assumes that all drives are identical, so the time
for reading data is the proportion of the quantum needed to switch the media on
the other drives (™=2Q). During the time assigned to read data, the drive must first
access the data and then transfer it. Given that the drive cannot predict the offset of

5.6 Periodic Quantum Model 103

the data to read, it uses the worst-case access time. Therefore, the remaining time
for transferring data TT is:

m-1

Any periodic model either needs to take into account the worst-case time caused by
robot contention in the execution time of the tasks or has to impose restrictions on
the way the robot is used. The first approach is used by Lau et al. [63] in the time-
dlice algorithm (see Section 2.2.3). The worst-case time caused by robot contention
is m?‘lQ, which is the time needed to perform a switch in all the other drives. The
second approach is used by Golubchik et al. [36] in their algorithm Rounds (see
Section 2.2.3) and in the periodic quantum model we present here.

Furthermore, any periodic model needs to couple the unload and the load. In
the case of computing using the worst-case time for robot contention, if the load
and unload are not coupled, then the robot-contention time has to be taken into
account twice, once before the load and once before the unload, which should result
in adding another mT‘lQ to the execution time. In the case of cyclic robot utilization,
the coupling is natural to the cycle.

A shortcoming of the periodic quantum model (and any other periodic model) is
that it needs to reserve the worst-case execution time of all operations. On the one
hand, it uses the maximum load and unload time to compute the quantum, because
it must guarantee that all combinations of drives and shelves are schedulable. If
the switch finishes earlier, the robot waits until the time of the worst case to start
unloading the next drive. On the other hand, it uses the minimum amount of data
which can be read during a quantum, even if the amount of data that can be read
in a quantum varies. In different instances of the task the data is read starting at
a different offset, therefore, the amount of data that can be read during TT is not
constant.

We define B to be the minimum amount of datathat can betransferredintime TT.
We compute B using a function §'" . that computes the amount of data that can
be transferred in time TT in the worst-case scenario. When using optical drives, the
worst case is determined by reading data from the inner tracks starting at track O.

B = Singe (TT) (5.3)

Another restriction of a periodic model isthat it can handle only requests with one
request unit for continuous media. A periodic model requires that the data of a
request is stored sequentially in the medium. The scheduler needs to know a priori
that a certain amount of data can be read during an instance of atask and the need to

104 Chapter 5. Formalization of the Scheduling Problem

access different parts of the RSM does not allow this predictability. It also needsthe
bandwidth to be constant. Thus, if the request should have multiple request units,
all the request units should have the same bandwidth. Furthermore, all the data of a
reguest needs to be stored in one RSM, because during each instance of the periodic
task only one RSM can be accessed. If the data should be stored in more than one
RSM, it could happen that executing an instance of atask could require more than
one RSM. Thus, that instance should require an additional switch and thetime of the
switch should have to be taken into account into all instances, because the duration
of the instance to use in the computation is the worst-case execution time.

Therefore, without loss of generality, when using the periodic quantum model, we
assume that any incoming request r, has only one request unit uy; and bj; > 0. Given
that the resulting request has only one request unit, we will simplify the notation by
using o;, s, m, and b; for the offset, size, medium, and bandwidth, respectively,
instead of 0,1, S1 M1, and by;.

A request is treated as a periodic task ;.2 The period of the task must guarantee
that enough data is available in the buffer for the user to consume the data at the
bandwidth specified in the request.

In the periodic quantum model the processing time of the tasksis always Q. The
period of the task is obtained from computing how often the buffers need to be
filled so that the user does not run out of data. The period depends on the bandwidth
required by the request and the bandwidth offered by the drive. Without loss of
generality we can assume that the datais consumed with a constant bit rate, because
the buffer size islarge. Anastasiadis et al. [5] and Bosch [14] show that a variable
bit-rate stream can be treated as a constant bit-rate stream when the buffer size is
large enough.

Clearly the bandwidth required by the request cannot be higher than the band-
width offered by an individual drive. Thisis arestriction that does not exist in the
original problem and in the other models presented in this chapter. Another disad-
vantage of this model is that during the last instance of the task the drive may be
idle most of the time after having read the data.

This model creates asoutput aset I' = {73, ..., 7y} Of periodic tasks to schedule.
Each task 7; needs to be executed only a finite number of times. We compute the
number of instances required by arequest as [tyanger (0i, S)/TT 1. Because the num-
ber of instances of each task isfinite, thereisno real need to use a periodic scheduler
to build schedules for thismodel. But periodic scheduling theory provides equations
to easily verify the schedulability of task sets without having to build the schedules.
Therefore, we use the periodic scheduler JEQS.

3 This model uses the notation corresponding to periodic scheduling theory (see Section 2.1.2).

5.6 Periodic Quantum Model 105

Task Parameters

The parameters of atask r; to schedule are the following:
e Theexecution time (C;) isaways Q.

e The period (T;) of the task is aways a multiple of Q. We compute the period
of thetask as T; = L%J Q, where B the amount of data read by a drive during
a cycle and is computed as shown in Equation 5.3, and by is the requested
bandwidth. We take the floor of the division, because the period needs to be a
multiple of Q to be able to use quantum theory.

e The shared resources (p;) indicate the RSM on which the data of the re-
guest is stored. The RSM is used as a shared resource, so that an RSM is
not assigned to different drives during overlapping time periods. When using
double-sided disks p; aso includes a shared resource representing the disk,
because reading data from one side of the disk prevents other task from read-
ing data from the disk, even if the RSM is different.

The current state of the jukebox is represented as shared resources. If 7; is
executing in drive j at the moment of computing the schedule (to), then D; is
also included in p;. Therefore, the new schedule built has to assign 7; to D;.

A scheduler may also decide to execute all instances of atask in asingle drive
and indicate the drive as a shared resource. In this case, the new task is the
only task that does not include in p; a shared resource representing a drive,
and can so be easily distinguished when building the new schedule.

e The next release time (r;) indicates the release time of the next instance of
the task. If r; < tg, where t, is the time when the schedule is computed, then
the last instance of the task has not yet been executed. Otherwise, the last
instance has already been executed and the release time corresponds to the
next instance of the task. This parameter is used by the dispatcher to go on
operating normally, even if the active schedule changes.

e The remaining instances (Rl;) indicate the number of remaining instances
for the task. For the correct functioning of the scheduler, once the last instance
was executed, the task remains in I" until the time of the deadline of the last
instance. Only then can the bandwidth used by ; be used by another task.

4 \We use the same mode! for double-sided disks as discussed in Section 5.2, where each side of the
disk is modelled as a separate RSM.

106 Chapter 5. Formalization of the Scheduling Problem

If there are multiple robots, we define one cycle for each robot. We also define
which drives and shelves will be served by one robot.
Chapter 7 presents a scheduler that uses this model—JEQS.

5.7 Dedicated Robots Model

The goal of the dedicated robots model is to build schedules without predefining
how to cluster the request units into jobs. However, this model imposes a strong
restriction on the hardware model. It assumes a dedicated robot for each drive. Be-
cause dedicated robots are not frequent in tertiary-storage jukeboxes, the usability
of this model is restricted to manufacturing environments.

The dedicated robots model derives from the problem model for a jukebox with
only one drive. In such ajukebox, the robot is dedicated, because it can only serve
one drive. For a one-drive jukebox, the problem can be easily represented as an
asymmetric travelling salesman problem with time windows, which is a problem of
the well studied family of travelling salesman problems (see Section 2.4). In the
case of multiple drives, each with a dedicated robot, the problem can be represented
as an extension of the asymmetric multi-travelling salesmen problems with time
windows (m-TSPTW).

We first model the problem for a jukebox with only one drive as an asymmetric
travelling salesman problem with time windows. We then extend this model for the
case of multiple drives and show the need of having dedicated robots to be able to
use this model.

Basically, the model for one drive represents each request unit as a node with a
deadline and a processing time. The processing time is the time it takes to transfer
the data of the request unit using the drive in the jukebox. The edges in the graph
represent the time it takes to jump from one node to the next. If both request units
arefor the same RSM, the length of the edge isthe time needed to go from the offset
of the last byte of the first request unit to the first byte of the second. If the request
units are on different RSM, then the length of the edge is the time needed to unload
the RSM of the first request unit, load the RSM of the second request unit and
go to the first byte of the second request unit. There is one directed edge between
each node representing the request units, because, in principle, every combination
ispossible.

The godl is to find a Hamiltonian path in this graph in such a way that the time
window restrictions of each node are respected. The time restrictions of the nodes
are given by the deadline of the request units. We add an initial and final node to
the graph. The initial node has an outgoing edge to every other node representing
arequest unit and the edge weight is the time to load the RSM and go to the first

5.7 Dedicated Robots Model 107

byte of the request unit. The final node has an incoming edge from every node
representing a request unit with aweight representing the time to unload the RSM.
The path must start at the initial node, pass once through each node representing a
reqguest unit and finish at the final node.

If the drive is busy at the time of computing the schedule, either reading or seek-
ing, then we also add another node to the graph. The node has as deadline, the time
at which the reading of the datawill finish, or if it has already finished and the drive
is switching, the time at which the schedule is computed. If the drive is performing
a‘jump’, the node has only one edge to the node representing the destination of the
jump, and the value of the edge is the time needed to finish the jump.

We can thus model the scheduling problem for a jukebox with one drive with
a known and well studied problem. Although this problem is NP-hard, there are
known heuristic algorithms to solve it [98, 99].

We can extend this model to the case of multiple drives by building such a graph
for each drive. The goa is now to find Hamiltonian partial paths on each graph.
Together, the Hamiltonian partial paths on each graph must cover all the nodes. This
problem, although relatively easy to model, is far more complex than the problem
for one drive: the algorithm must now decide which nodes to include in the partial
path for each drive and has to guarantee that two nodes involving the same RSM are
not scheduled during the same time period on different drives.

The problem for multiple drives is equivalent to the asymmetric multi-travelling
salesmen problemwith time windows (m-TSPTW) with the additional restriction that
some nodes and paths are mutually exclusive and the salesmen are not identical.

There is, however, a more serious problem in the model for multiple drives than
assuring the mutual exclusion on the RSM. The dedicated robots model assumes
that there is a dedicated robot for each drive, because the paths on the different
graphs can be computed independently. If there are shared robots, then choosing an
edge in one graph and assigning it a time in the schedule, prevents choosing other
edges in other graphs and the computation of the different graphs can no longer be
made independently.

5.7.1 Problem Formalization

We model the scheduling problem as
Rn| 0, Sjk.res. 11| —

The drives are represented as m unrelated processors, because they can have differ-
ent characteristics and the processing time depends on the drive and on the RSM

108 Chapter 5. Formalization of the Scheduling Problem

being read. There are m robots, one robot dedicated to each drive. We do not need
to represent the robots as processors, because operations of robot i can never occur
in parallel to operations of drivei. If robot i is busy performing an operation then
drivei is aso busy performing that same operation. It is, thus, enough to model the
processor environment by representing only the drives.

The tasks to schedule are the set ¢’ of request units with added setup times. We
map each u;, € U’ to atask Tj € 7. A task has as deadline, which is the deadline
of the request unit, and a vector of processing times indicating the time it takes to
transfer the data with each drive in the jukebox. The setup time is defined for each
pair of tasks using each drive. For each pair of tasks T; and Ty, it representsthe time
needed to start reading the data of Ty after the data of T; has been read. If the data of
T isstored in adifferent RSM as the data of Ty, the setup time is the time to unload
the RSM of T; and load the RSM of Ty. Otherwise, the setup time is the accesstime
to go from the last byte of T; to the first byte of T,.

The set of tasks 7 aso includes one initial and fina task for each drive. The
initial task T indicate for each drive i the setup time needed to start executing the
first task. The graph representation has an edge from each of these initial tasks to
every other task that is not initial. The final tasks T' are used to represent the time
needed to unload the RSM of the last task in the schedules. The processing time of
theinitial and final tasksisO.

The optimization criterion is to find a feasible schedule for the task set. In this
model, thisis equivalent to finding Hamiltonian partial pathsin the m graphs repre-
senting each drive, which together include all the nodesin 7. Each path corresponds
to one drive and has the basic structure T2, ..., T'

.oy it

5.7.2 Example

We illustrate now with a simple example how a set of request units U’ is trans-
formed into a task set 7~ of the dedicated robots model. We then show a feasible
schedule for 7. Table 5.6 shows the request units that need to be scheduled. With
one exception, the request units are the same as in the example for the minimum
switching model (see Section 5.3.1): the deadline of ug; is more restrictive and
forces every feasible schedule to unload RSM 10 after the data of u;; has been
read.

Thejukebox has two non-identical drives and two identical dedicated robots. The
functions to determine the load, unload, read and access time are the same asin the
example of the minimum switching model (see Table 5.3 on page 99). Asin the
previous example, Drive 1 isloaded with RSM 3 and the drive is busy reading data
from it for another 20 seconds, and Drive 2 is empty. We assume that Drive 1 is
reading the first 200 MB of datafrom RSM 3.

5.7 Dedicated Robots Model 109

RU | Deadline RSM Offset Size Bandwidth
(seconds) | ldentifier | (KB) (KB) (Kbps)
U1 50 10 60 | 204800 1024
Ur2 210 10 | 204860 | 409600 1024
Ug1 150 300 200 | 102400 0
Ug2 150 300 | 204800 | 51200 0
Uss 90 300 | 409600 | 204800 512
Ug1 140 720 60 | 409600 2048
Us.2 180 3 | 614400 | 15360 128

Table 5.6: Request unitsin U’ for the example of the dedicated robots model.

Task | Deadline | Processing times | RSM
T, 50 [20,30] 10
T 210 [40, 60] 10
Ts 150 [10, 15] 300
Ta 150 [5.0,7.5] 300
Ts 90 [20,30] 300
Te 140 [40, 60] 720
T, 180 [1.5,2.25] 3
T 20 [20, o] 3
Tf 0 [0, 0]

Tg 0 [c0,0Q]
T 00 [0, 0]
T, 00 [00,0]

Table 5.7: Tasks to schedule for the example of the dedicated robots model. The first
column identifies the task, the second column indicates the deadline of the task, the third
column indicates the processing time of the task using each drive, and the last column indi-
cates in which RSM the data of the task is stored. The setup times are shown in Tables 5.8
and 5.9.

110 Chapter 5. Formalization of the Scheduling Problem

T T T Ta Ta Ts Te Tz | T,
TO| 0[152 156 202 206 21 302 117| O
T, | o | 207 221 267 271 275 367 06 |65
T.| | o 02 302 306 31 402 217 10
T,| | 06 o 302 306 31 402 217 10
Ts | | 302 306 o~ 04 08 402 267| 15
To| o |302 306 07 o 05 402 267 | 15
Ts | © [302 306 14 1 o 402 267 15
Te | o | 402 406 402 406 41 o 367 | 25
T; | o | 207 221 267 271 275 367 <« |65

Table 5.8: Setup times for Drive 1 for the example of the dedicated robots model.

T

T

T3

Ta

Ts

Te

T7

I\J_L

i

121

12.3

171

17.3

175

27.1

8.6

T1
T2
T3
Ta
Ts
Te
T7

(¢]
0.3
26.1
26.1
26.1
36.1
17.6

0.1
o0
26.3
26.3
26.3
36.3
17.8

26.1
26.1
(o¢]
0.35
0.7
381
22.6

26.3
26.3
0.2
[S0]
0.5
38.3
22.8

26.5
26.5
0.4
0.25
(oe]
385
23

36.1
36.1
381
38.1
38.1
o0

32.6

17.6
17.6
22.6
22.6
22.6
35.6

o0

Rk oolo

1
14
24
55

Table 5.9: Setup times for Drive 2 for the example of the dedicated robots model.

The request units are transformed into the tasks that need to be scheduled. These
tasks are shown in Table 5.7. T; represents the task currently activein Drive 1. The
duration of T; is set to 20, which is the time needed to finish executing the read.
T2 and T represent the initial tasks of the graphs corresponding to Drive 1 and
Drive 2, respectively, and T; and T} represent the final tasks. Tables 5.8 and 5.9
show the setup times when using Drive 1 and Drive 2, respectively.

Figure 5.8 shows afeasible schedule for this example. All the tasks are scheduled
before their deadline and there are no conflicts in the use of the resources. Note that
RSM 10 isloaded twice, each timeto read the data of one of the tasks corresponding
to it. Any feasible schedule for this task set needs to unload RSM 10 after reading
the data of T, because otherwise the deadline of Tg cannot be met.

5.7 Dedicated Robots Model 111

ZO\T 49.6 69.6 86,3 116.9 156,9

D, B201 T1 S2,1,6 Te S2,6.f

12.1 42.1 78.2 138.2

Figure 5.8: A feasible schedule for the example of the dedicated robots model.

5.8 Optimal Model

The optimal model can represent all possible ways of grouping the request units
in U’ into jobs to solve the switch/no-switch conflict. The jobs have the structure
described for the fixed switching model in Section 5.2.

Each job represents request unitsfor one RSM. In order to find the optimal sched-
ule, all the possible ways of clustering the request units into jobs must be analyzed.
Each clustering represents a different job set 7 of the fixed switching model.

Finding a solution for the optimal model requires finding a solution for at least
one of the possible job sets. In the worst case, when no job set is feasible, al job
sets need to be analyzed. Clearly, analyzing all the sets results in an exponential
algorithm. The optimal scheduler presented in Chapter 7 prunes the tree of possible
sets in an efficient manner by using constraint logic programming. However, the
search tree is so big, that it is not possible to use the optimal scheduler for ¢4’ with
more than a few request units per RSM.

To reduce the computational complexity the optimal scheduler imposes some re-
strictions on the hardware model. It assumes that the drives are identical, that the
accesstimeis constant, and that the RSM are single-sided disks. The optimal sched-
uler also restricts the requests to ASAP requests, because it uses the minimization
of the response time as a parameter to prune the tree of possible schedules.

5.9 Summary

In this chapter we presented several alternative modelsthat capture the environment
of the scheduling problem with some restrictions. Table 5.10 presents a summary
of the restrictions of each model.

The original scheduling problem is so complicated that we could not find a rep-
resentation of the full problem using scheduling theory. The model corresponding

112 Chapter 5. Formalization of the Scheduling Problem

to the original problem, the optimal model, is equivalent to finding a solution to any
of the possible ways of clustering the request units for one RSM into jobs that need
aload, read and unload operation.

The most general of the models is the fixed switching model, which can deal with
any type of hardware and request. Thismodel only imposes afixed clustering of the
reguest units for an RSM into ajob. However, it can handle any possible clustering.
We use the fixed switching model to define the optimal model.

The minimum switching model restricts the unloading of an RSM to the moment
when all the data requested from it has been read. We use the medium schedules
to determine the sequence to read the data from each individual RSM. Using this
model we cannot build a schedule in which the data of an RSM is read in multi-
ple steps with intermediate switches, although such a schedule may be the optimal
schedule. However, imposing this restriction on the resource utilization results in
good system performance. During a switch the drive cannot be used to read data,
therefore, bandwidth is lost during each switch. This model minimizes the number
of switches and, thus, strives to minimize the lost bandwidth. This model imposes
onerestriction on the hardware model: the RSM must not be double-sided disks that
need turning. We believe that the restriction on this type of disk will soon become
irrelevant, because in order to make double-sided disks a commercia success the
drives must be able to read double-sided disks without turning them.

The switch-read model is the model underlying the aggressive and conservative
strategies proposed by Lau et al. Apart from the restrictions imposed by the mini-
mum switching model, this model imposes additional restrictions on the robot us-
age, because the unload and load operations are coupled into a single switch oper-
ation. Thus, the drives stay loaded until they are needed again. As a consequence a
scheduler based on this model has longer response times than a scheduler based on
the minimum switching model (see Chapter 9). Additionally, the switch-read model
Imposes strong restrictions to the hardware model. We have relaxed some of these
restrictions on the extended switch-read model, which can deal with non-uniform
drives, variable load and unload times and multiple robots. However, this extended
model still imposes restrictions on the scope and functionality of the robots.

The imperative switching model forces the unloading of the RSM after reading
the data of a request unit. The schedules built to fit this model make unnecessary
switches, resulting in a poor use of the resources.

The periodic quantum model uses the robot in a cyclic way, switching the RSM
in the drives at periodic times. Every time an RSM is loaded into a drive only a
limited amount of data can be read from it. The model handles each request as a
periodic task. A strong restriction of this model is that it can only handle requests
with one request unit and the data must be continuous (e.g., video). Additionally,

59 Summary 113

the bandwidth that can be requested is limited by the bandwidth offered by a drive.
This model aso puts restrictions on the hardware model, as it can only deal with
identical drives and every robot must be able to load and unload.

Finally, The dedicated robots model captures only one subset of the hardware
model. It assumes that the robots are dedicated resources, i.e., that there are as
many robots as drives and each drive uses only one robot to load and unload the
RSM. Although, this type of hardware is not realistic in a jukebox and, therefore,
the model is not useful to build ajukebox scheduler, the model could be used in the
manufacturing scheduling application discussed in Section 2.3.

In this chapter we have shown also that the scheduling problem is NP-hard. We
have done this by showing that our simplifications of the problem are already NP-
hard.

Model Name Restrictions

HW Model Resource Usage Requests
Fixed e Fixed clustering of
Switching request units
Minimum e Single-sided RSM e Read dl datafrom an
Switching RSM before unloading it
Extended e Single-sided RSM e Coupled unload and
Switch-Read | e Restriction on robot load

scope and functionality e Read al datafrom an

RSM before unloading it

Switch-Read | e Single-sided RSM e Coupled unload and

e |dentical drives load

e Constant switch time e Read all datafrom an

e Onerobot RSM before unloading it
Imperative e Executeload and unload
Switching for each request unit
Periodic e |dentical drives e Coupled unload and e One reguest unit
Quantum e Restriction on robot load e Only continuous

functionality e Cyclic use of robot media

e Forced unload e Restricted
bandwidth

Dedicated e Dedicated robots
Robots

Table 5.10: Summary of the restrictions of the scheduling-problem models.

114 Chapter 5. Formalization of the Scheduling Problem

Chapter 6

Promote-IT

Promote-IT (Promote In Time) is a heuristic jukebox scheduler based on the mini-
mum switching model (see Section 5.3). Promote-IT owes its name to the fact that
it guarantees that the data is promoted into secondary storage in time. As we have
shown in the previous chapter, the scheduling problem is NP-hard. Therefore, there
is no optimal polynomial algorithm to solve the problem and the only way to build
an on-line system isto use a heuristic algorithm.

We define different strategies to incorporate the jobs to the schedule: earliest
deadline first (EDF), earliest starting time first (ESTF), latest deadline last (LDL)
and latest starting time last (LSTL). The strategies define how the jobs must be
sorted and incorporated into the schedule. Because there is an exponential number
of possible assignments of resources to the jobs, we define a branch-and-bound al-
gorithm to prune the tree of possible assignments that uses the best-drives heuristic.

Promote-IT uses early dispatching to improve the utilization of the jukebox re-
sources. Early dispatching makes the Back-to-Front strategies—LDL and LSTL—
competitive.

6.1 Scheduling Algorithm

Promote-IT refines the generic scheduling algorithm presented in Section 3.5. It
represents the scheduling problem as an instance of the minimum switching model,
and triesto build afeasible scheduler for it.

The structure of the scheduling algorithm of Promote-IT is the following:

1. Generate a candidate starting time sty and update the deadline of each request
unit so that d; = sty + Ady. The algorithm uses a variation of the bisection
method for finding roots of mathematical functions.

2. Model U’ as an instance of the minimum switching model. We represent the
instance of the problem by the set 7 of jobsto schedule.

115

3. Compute the medium schedules. For each RSM, compute m medium sched-
ules—one M Sfor each drive. Set the parameters of the duration and deadline
of the read tasks Ty to the corresponding values of the computed MS (as
explained in Section 5.2)

4. Compute the resource assignment. The algorithm must incorporate each job
J; € J into the schedule. If the algorithm succeeds in finding avalid resource
assignment, the output of thisstep isafeasible schedule S; otherwise S* = &.
The pair (S, st}) isincorporated into the list of analyzed solutions.

5. Repeat from step 1 until the bisection stop-criteria is fulfilled for the list of
candidates, i.e. the time difference between the last unsuccessful and first
successful candidate is smaller than a threshold.

6. Select the best solution. The best solution is the earliest candidate starting
time for which step 4 could compute afeasible schedule (min{st; | S # @}). If
thereis no such sti, the request ry is placed in the list of unscheduled requests
to be scheduled at alater time. Otherwise, the scheduler confirms the starting
time stk to the user and replaces the active schedule with the new feasible
schedule.

Steps 2 and 3 are structured differently than in the generic algorithm presented in
Section 3.5. We now divide the modelling of 24’ into an instance of the schedul-
ing problem into two steps. In step 2 the set of jobs is determined, following the
principles of the minimum switching model discussed in Section 5.3. However,
the parameters of the read tasks Ty are still undetermined. Only once the medium
schedulesare computed in step 3, all the parameters of theinstance of the scheduling
problem are defined. In step 4, we refine the meaning of finding a feasible sched-
ule to finding a resource assignment for the jobs in . In the next paragraphs we
describe the heuristic used to determine the starting time.

We determine the candidate starting time for an ASAP request using a variation
the bisection method. The bisection method is a ssimple iterative method to find
roots of mathematical functions. In our case, the goal is to find the smallest value
for which the algorithm succeeds. We use an interval, which has as lower bound the
highest value for which the algorithm failed, and as upper bound the lowest value
for which the algorithm succeeded. We reduce the size of the interval until it reaches
alower limit £ in the size of the interval.

However, if we view the success of the algorithm as a function success(st) on
the starting time, this function is not monotonous. The scheduling algorithm cannot
guarantee that whenever it can build a feasible schedule for the candidate starting
time x it can also build a feasible schedule for all candidate starting times greater

116 Chapter 6. Promote-IT

than x. Therefore, in any interval, there may be multiple zeros for the function
success(st) and the bisection method will converge to one of them. However, the
situations in which the function success(st) is not monotonous are rare, thus, we
can use this method with a high degree of confidence.

The scheduling problem is monotonous and an optimal algorithm should be able
to find a feasible schedule for every y > x*, where x* is the minimum possible
starting time for the request. But there is no optimal polynomial algorithm for the
scheduling problem, because the problem is NP-hard.

The first candidate starting time is the deadline of the request. If the deadlineis
infinite, then it uses a predefined ‘big’ candidate starting time. If the algorithm fails
to build afeasible schedule for that candidate starting time, then the algorithm stops.
However, if it succeeds, there may be a smaller starting time for which a feasible
schedule can be built. Aslower bound for the bisection interval, it tries the time at
which the scheduleis computed. If it is possible to build afeasible schedule for this
time, then the request can start immediately and the algorithm stops. Otherwise it
suggest an intermediate time between this last time and thefirst time. The algorithm
continues to reduce the size of the interval until the size reaches ¢.

The maximum number of candidate starting times n to try is derived from the
formula that determines the convergence speed of the bisection algorithm: (ai -
to)/2" < e. If the request had an infinite deadline, then di must be replaced in the
formula by the first candidate time tried.

In the implementation we use a variation of this method which converges to a
solution faster and provides slightly better solutions. This variation first tries suc-
cessively bigger starting times, starting with the minimum response time, until it
succeeds. Only then it uses the bisection method between the last unsuccessful can-
didate starting time and the successful starting time.

6.2 Scheduling Strategies

We define four strategies to incorporate the jobs to the schedule, which are shown
in Figure 6.1. The strategies are defined by two axes indicating the way in which
the jobs are incorporated to the schedule: Front-to-Back (F2B) and Back-to-Front
(B2F), and the parameter of the tasks to use for sorting the jobs: deadline or LST .
When using aF2B strategy, each job is scheduled as early as possible and the jobs
are incorporated to the front of the schedule in increasing order of ‘restrictiveness',
in such away that the most ‘restrictive’ jobs are incorporated to the schedule first.
Thetasksareincorporated F2B aswell, scheduling first the load Ty, then theread Ty;
and finally the unload T5. When using the B2F strategy, each job is scheduled aslate
as possible and the jobs are incorporated to the back of the schedule in decreasing

6.2 Scheduling Strategies 117

Front-to-Back

Earliest Deadline First
(EDF)

Earliest Starting Time First

Ordered (ESTF)

by LST

Ordered by
deadline

Latest Deadline Last
(LDL)

Latest Starting Time Last
(LSTL)

Back-to-Front

Figure 6.1: Classification of the scheduling strategies.

order of ‘restrictiveness' . The tasks, in turn, are incorporated B2F, scheduling first
the unload T3, then the read Ty and finally the load Ty;.

In both cases, the goal is to place the most ‘restrictive’ tasks at the front of the
schedule and the less restrictive tasks at the back of the schedule.

The ‘restrictiveness of a job can be determined in different ways, in our algo-
rithm we use either the deadline or the latest starting time of the read tasks. We
define the latest starting time (LST) of atask as the latest time at which the task
must start executing in order not to missits deadline (Istj = a,- - P)-

The principle of Front-to-Back derives from Jackson's earliest due date (EDD)
algorithm [50] defined in the uniprocessor environment for tasks with due dates
(1 || Lmax)- Thetasks are ordered by increasing due date (alternatively deadline) and
incorporated into the schedule in that order, each task as early as possible. EDD is
optimal in the uniprocessor environment. It is optimal as well when the tasks have
deadlines and the goal is to find a feasible schedule (1 | d | —), in which caseiit is
generally refereed asthe earliest deadline first (EDF) algorithm.!

The EDF agorithm is a simple polynomial algorithm. It keeps a lower bound Ib
that indicates the time that the next task incorporated to the schedule will be as-
signed. If this time is later than the latest starting time of the task, then the task
cannot be added and there is no feasible schedule. Thus, the first task in the sched-
ule is scheduled to start at time ty, where tg is the time at which the schedule is
computed, and the last task is scheduled to finish at the time given by the sum of the
processing times of each task to + XL, .

We define the latest deadline last (LDL), which sorts the tasks in decreasing or-
der of deadline and incorporates the tasks to the back of the schedule. The algorithm
keeps an upper bound ub that indicates the latest time at which atask incorporated
to the schedule can finish. Each task is scheduled at the latest time it can be incor-
porated without missing its deadline and respecting the value of the upper bound of
the schedule. Thus, each task T, is assigned the starting time min(d;, ub) — p;. If this

1 Strictly speaking the EDF algorithm [48] was defined for tasks with arbitrary arrival times and the
possibility to preempt the active task, so using thisnamefor the 1 | d | — isnot completely correct.

118 Chapter 6. Promote-IT

Figure 6.2: Scheduling strategiesin a uniprocessor environment. ESTF and LSTL are not
successful.

timeislower than ty, then the schedule is not feasible. The starting time assigned to
thefirst task is greater than or equal to to.

In the uniprocessor environment LDL is equivalent to EDF, because it produces
the same sequences. Consequently, the LDL algorithm has the same complexity
as the EDF algorithm and is optimal. Additionally, LDL has the advantage that it
provides the latest starting time at which the schedule must begin executing so that
no task misses its deadline. The schedule has *holes' in which the processor isidle.
If desired, these ‘holes’ can be eliminated easily, by dispatching the next task to the
processor whenever the processor becomes idle, or by re-computing the assigned
times of the tasks in a front-to-back manner, assigning each task the finishing time
of the previous task in the schedule.

In the parallel processor environment neither EDF nor LDL are optimal. Because
the scheduling problem in the multiprocessor environment is NP-hard, there are no
optimal polynomial agorithms that can solve it. Therefore, EDF and LDL cannot
be optimal. Clearly, EDF and LDL are not optimal for the more complex flexible
flow shop environment problem we are trying to solve.

However, although EDF and LDL are not optimal in our problem environment,
we believe that they are a good basis for building simple polynomial agorithms to
solve the scheduling problem we are concerned with. In Chapter 9 we show through
experiments that this claim isvalid.

The other two strategies we define—earliest starting time first (ESTF) and latest
starting time last (LSTL)—sort the tasks using the latest starting times instead of
the deadlines. Although sorting the tasks by L ST is not optimal in the uniprocessor
environment this way of ordering the tasks can be effective in the multiprocessor
environment. Figure 6.2 shows that ESTF and LSTL are not optimal in the unipro-
cessor environment: the task set can be scheduled using EDF and LDL, but not
ESTFand LSTL.

6.2 Scheduling Strategies 119

T, T,
T LE | T LE
[T, l
T, T,
Pl[T, I T | P, T,
p2 [1 7] =St { R
N S Pl T
EDF < . EDF | 4 p [TT =
o[Ta] 2 |
{Pz[T, [T,]
T2
LDL {El [T[| 1“ ‘ | ™ {Pl [T]
2 3 1 P, T[T,
LsTL 4t | L | LsTL 4t LE LE
P, I Ts I T l P,

—
o
le—1

P, T T4
ESTF
A T \
e
P,[T, i P, [Tl
EDF P
p] T, T 2
EDF P, T T
Ll T) I —
LDL
LDL P, [T,] Ts ‘ P, [T] T T,
PZ T2 T3
.
[T [T,] LSTL
P, 3 5 = T]
LSTL 2 4
F)2 Tl T2 T4 [-TGI

Figure 6.3: Scheduling strategies in a multiprocessor environment (P»). In each example
one strategy is successful (boxed).

120 Chapter 6. Promote-IT

=1
ﬁ

ESTF
T4
LSTL 1

P, T4

g’
P
{PW
o
;

B
[opmal]”

oL Ts T,

Figure 6.4: Example where no strategy is successful, although a feasible schedul e exists.

In the multiprocessor environment none of the strategiesis absolutely better than
the others. Each strategy can find schedules that cannot be found by the others.
Figure 6.3 shows examples where only one strategy is successful in finding a fea
sible schedule. Figure 6.4 shows an example where no strategy successfully finds a
feasible schedule, although the task set isfeasible.

In our scheduling problem we sort the jobs using the parameters of the read tasks
T, becauseinitially these tasks are the only tasks that have defined deadlines. How-
ever, the deadline and LST of the read tasks are not unique values, because they
depend on the drive to use. Both the deadline and the processing time of T are
vectors. In all cases we use the worst-case value of the corresponding parameter of
Ty

6.3 Drive and Robot Schedules

As described in the model, a schedule consists of mdrive schedulesD, .. ., D, and
r robot schedules R, . .., R.. We define for each drive schedule D; atime window
in which new tasks can be incorporated to the schedule. Thiswindow is determined
by alower and upper bound, Ib; and ub;, respectively. These two parameters derive
directly from the definition of the F2B and B2F algorithms.

6.3 Drive and Robot Schedules 121

lower bound upper bound

front-to-back back-to-front

—

time window

Figure 6.5: Time window of the drive schedule. The time window shrinks as jobs are
added to the drive schedule.

Figure 6.5 shows the time window of a drive schedule and how the window
shrinks when jobs are added to the drive schedule. When using F2B the lower bound
increases its value as jobs are added, while the upper bound does not change. When
using B2F the upper bound decreases its value as jobs are added, while the lower
bound does not change. Theinitial value of the upper bound isinfinite and theinitial
value of the lower bound is ty, the time at which the schedule is being computed.

Restricting the scheduling of the new jobs to the time window makes the algo-
rithm to add a new job to adrive schedule very simple. The algorithm must only try
to include the job at the corresponding end of the window and if it fails then the job
is not schedulable using that drive.

The jobs are sorted according to the strategy used: by increasing values when
using F2B and by decreasing values when using B2F. If weignore the shared robots
and analyze what happens when using F2B we see that each job is scheduled as early
as possible. If there should be ajob that could be scheduled earlier than the lower
bound, then the previous job could aso have been scheduled earlier and the lower
bound should be lower. However, the presence of shared robots and non-constant
load and unload times, reduces this rule to a ssmple heuristic. The shared robots
create situations in which the window has to shrink more than needed, in order to
be able to use the robots.

The robot schedules R, have no windows restricting when the jobs can be sched-
uled. The loading and unloading tasks of the different drives can be interleaved on
the robots. The scheduler keeps an ordered list of tasks that have been scheduled on
R and these tasks must not overlap. Thus, adding a new task on R, requires finding
an appropriate holein the list of tasks.

6.4 Model Extension

We extend the minimum switching model with some parameters, which simplify
the formalization of the scheduling algorithm. These new parameters are not strictly
necessary to define the scheduling problem, which is why they were not presented

122 Chapter 6. Promote-IT

Parameter Load Task Tyj | Read Task T | Unload Task Ts;
Processing time Pi1j Pizj Prizj
Deadline o iy dy
Release time ry ry r3j (*)
Resource constraints RCy RCy; RC;;
Machine €ligibility restrictions My; Mo M3
Assigned time agj (*) aj (*) agj (*)

Table 6.1: Parameters of the job tasks. A sub-index i indicates a drive and a sub-index k
indicates arobot. The parameters marked with (*) are new.

in the model, but make the computation and verification of the algorithm easier.
Table 6.1 shows all the parameters of the jobs and indicates the new parameters.

We add to each task the assigned time (a) that indicates the time at which the
task must start execution. The value of the assigned time is set when the task is
assigned the resource where it will execute.

We also add arelease time parameter to the unload task (rg) to indicate the earliest
time at which the task may be scheduled. This parameter is also set as the algorithm
assigns the jobs to the drives.

Sometimes we will abuse the notation and refer to az,- and py as asingle value
instead of a vector meaning really aiz,- and piy respectively, where i is the drive
assigned to T,. We will do the same with the processing time of the load and the
unload, referring to them as py; and ps; when we really mean pyiy; andpyigj, where i
isthe drive and k is the robot assigned to the task.

The following relations must hold for every feasible schedule:

M < 8y < Oy — Py (6.1)
Ay + Py = A (6.2)
ry > Iby (6.3)
dy < ub; (6.4)

The first relation indicates that every task must begin execution at atime later than
its release time and finish execution before its deadline. The second relation estab-
lishes that each task of ajob must finish executing before the next task of the job
begins. The third relation establishes that aload task on drivei cannot begin earlier
than the lower bound of D;. And the last relation establishes than an unload task on
drivei cannot finish later than the upper bound of D;.

6.4 Model Extension 123

Job Load (Ty;j) Read (Tj) Unload (T3j)
Jl P11 = [15, 12] ~p2,1 = [60.4, 90.2] P31 = [10, 9]
d21 =[90.1,110, 2]
| PpL2=[20,17] | p22=[35.7,53.35] | ps2=[1514]
do2 = [105.2,112.9]
J3 P13 = [30, 27] p~2,3 = [40.2, 60. 1] P33 = [25, 24]
dz3 = [180, 180]
J4 P14 = [0, o] P24 =[210] P34 = [8.5,5.9]
dis =[0,0] d4 = [180, 180]
24 = 20 34 = 21.60
RC14 = (D1, R1) RC24 = (D1,-) RC24 = (D1,-)
aj4 = 0 o4 = 20

Table 6.2: Job set of the example after including the inflexible tasks (T14 and T2.4).

6.5 Resource Assignment

We now explain how the resources are assigned to the tasks. We divide the tasks
to schedule into inflexible and flexible tasks. The algorithm first incorporates the
inflexible tasks to the schedule and then the flexible tasks.

The inflexible tasks represent the RSM that are active in a drive. We call them
inflexible, because they are restricted in the resources and time slots they may be
assigned. Scheduling thesetasksis straightforward, because thereisno real decision
to make. They must ssmply be assigned to the same resources in which they are
actually executing.

We add the inflexible tasks to the front of the schedule, thus, modifying the lower
bound of the drive schedules. Table 6.2 shows the job set used in the previous chap-
ter (see Table 5.5 on page 100) after the assignment of the inflexible tasks T, 4 and
T2,4.

Theflexible tasks are all the tasks that are not inflexible. Scheduling these tasksis
the interesting problem because there is an exponential number of possible assign-
ments and, thus, the algorithm must prune the tree in an effective way.

The principle of the algorithm isthat for each job it first chooses a drive and then
tries to find robots that will allow loading and unloading the drive in time. It starts
by choosing the drive, because it is the resource that is involved in all the tasks of
the job and, thus, must be reserved for the whole execution of the task. When using
F2B, the algorithm first schedules the load, then the read and finally the unload.
It incorporates each task to the schedule as early as possible. When using B2F,
instead, the algorithm first schedules the unload, then the read and finally unload;
each task as late as possible.

124 Chapter 6. Promote-IT

The algorithm begins by sorting the jobs from which no task has yet been sched-
uled, using one of the strategies defined in Section 6.2. We call this subset of jobs
J’. It then incorporates the jobsin g to the schedule in the appropriate order.

6.5.1 Branch-and-Bound Algorithm

The full tree of possible assignments of resources to the jobsin g’ has m" nodes,
where mis the number of drives, and n = | 9’| is the number of jobs. Level j in the
tree represents the incorporation of job J; into the schedule. Each level has m nodes,
one for each drive in the jukebox. In principle, each job can be assigned to any of
the drives. Thus, traversing the full tree needs exponential time.

Our agorithm uses a branch-and-bound algorithm to search for a solution in the
tree and prune paths that are not promising. The algorithm uses the best-drives
heuristic. At each level, the algorithm assigns a heuristic value to each of the drives.
This value depends on the bounds of the corresponding drive-schedule window. All
drives that have the maximum heuristic value are considered ‘ best’.

The algorithm traverses the tree in a depth-first manner. When it succeeds in
going down in the tree to node i on level j, it prunes all the siblings of node i that
arenot ‘best’.

When using B2F, the algorithm uses the upper bound ub; of the drive schedules
as parameter for the heuristic. The heuristic function is h(ub;) = ub;, because the
drive that may allow the job to finish later should be analyzed first.

When using F2B, the agorithm uses the lower bound Ib; of the drive schedules
as parameter for the heuristic. The heuristic function is h(lb;) = —Ib;, because the
drive that may allow the job to be scheduled earlier should be analyzed first.

The intuition behind the best-drives heuristic is that at each point with multiple
equally best drives, the algorithm is choosing one. This choice may turn out to be a
bad choice when other jobs areincorporated into the schedule. The algorithmisthen
able to try another best drive and seeif thisyields afeasible schedule. This strategy
is especially effective when incorporating the jobs B2F, because the algorithm first
incorporates the jobs with less restrictive deadlines and when it tries to incorporate
the jobs with more restrictive deadlines it may be restricted to drives with a high
lower-bound.

Figure 6.6 shows a task set that is schedulable using the best-drives heuristic
and the LDL strategy. The jukebox has three identical drives and one shared robot.
Drive 2 and Drive 3 are busy reading data corresponding to T, and T, 5, respec-
tively. Four more jobs need to be incorporated into the schedule in the order Jy, J,,
Js, and Ja.

6.5 Resource Assignment 125

o 7 |
§ Toq v
S Too
(%) |
8 < | Tos !
n |
5 | Tou '
8
T Tss |
g | T 1
() 1 1.4 35[0 a1 3611, 34| a2
o |R L T35[T Todid TadT
S i
8 D, T, 4| T4 | T34 2| Tsn |
% D, | To6 | Tad13) Tos |
D; Tos Tas Tils Toa |

Figure 6.6: Example of afeasible schedule built using the best-drives heuristic.

Figure 6.7 showsthe search tree that the algorithm traverses. At each step it shows
which parts of the tree are pruned using the best-drives heuristic. When the algo-
rithm starts, all drives have the same heuristic value, which is infinite, because no
job has yet been added to the end of the schedule. At this step all drives are *best’.
The algorithm can choose any of the drives to schedule J;. It chooses D; and it
succeeds. It tries to prune all the ‘non-best’ siblings, but there are none. It then in-
corporates J, into the schedule. The computation of the heuristic values marks D,
and D3 as ‘best’, so the algorithm first chooses one of them. It succeedsin assigning
J, to D, and, therefore, it prunes al the ‘non-best’” siblings, which in this case is
the branch of D;. It succeeds in assigning Js to D3, which is the only ‘best’ drive
at level 3, and prunes the branches of D; and D,. However, the algorithm does not
succeed in assigning J, to any of the drives and has to backtrack to a place in the
tree with open branches. It tries then the assignment of J, to D3 and it succeeds.
This branch does not lead to a good solution either, because after J; is assigned to
D., the algorithm does not succeed in scheduling J,.

At this point, the branch corresponding to the assignment of J; to D; has been
exhausted and can be discarded. The algorithm failsto assign J; to D, but succeeds
in assigning it to D3. This leads to a feasible schedule, assigning J, to D4, J; to J,
and J, to Dy.

An important property of the best-drives heuristic is that with a single shared
robot, the possible number of pointswith multiple best candidate drivesisrestricted.
In the first round of the algorithm the number of drivesis at most m, at the second

126 Chapter 6. Promote-IT

SS90d0Ns

OOOO00D00u‘.u..u.....u:n:u...................-.

/e

feasible schedule using the best-drives heuristic

a

Figure 6.7: Search tree of the example of

for the tasks shown in Figure 6.6.

127

6.5 Resource Assignment

step m—1, and so forth until after thefirst m— 1 rounds thereis always only one best
candidate drive. The load and unload influence the value of the bounds of the drive:
when using F2B the value of the lower bound is established after the unload has
been scheduled, while when using B2F the value of the upper bound is established
after the load has been scheduled. Therefore, if there is a single shared robot, two
drive schedules with a job assignment to each, must have different values for the
bound defining the ordering.

The maximum number of nodes in the tree that are analyzed is m! mn, where
n is the number of jobs and m is the number of drives. So, the complexity of the
algorithm is polynomial in the number of jobs, because mis constant.

Without shared robots we cannot guarantee that the complexity of the algorithm
is polynomial. Let us assume that there are two identical drives with identical ded-
icated robots and all the jobs have the same characteristics. Then after scheduling
the first two jobs, there is again a situation with two best drives. This situation
will present itself every two steps and thus the maximum number of schedules the
agorithm will try is 22. But the probabilities of having such a job set are low—
especially because the load and unload times depend on the shelf wherethe RSM is
stored. Thus, in practice the maximum number of schedulesto build isstill m!.

6.5.2 Job Incorporation

We now explain how we incorporate one job into the schedule using the Front-to-
Back and Back-to-Front strategies. When using F2B, the algorithm schedules first
the load, then the read and finally the unload. It schedules each task as early as
possible. When using B2F it first schedules the unload, then the read and finally the
|load—each task as late as possible.

With drive D; assigned by the branch-and-bound algorithm and the successful
incorporation of the job, the time window of D; is adjusted. With F2B the lower
bound of D; increases its value, while the upper bound does not change. With B2F
the upper bound decreases its value and the lower bound does not change.

The robot schedules do not have atime window, but alist of scheduled tasks. The
new tasks can be added in the holes in the list. The tasks are ordered by assigned
time. Each task can be viewed as an interval during which therobot isreserved. The
lower bound of the interval is the assigned time of the task and the upper bound is
the assigned time plus the duration.

The algorithm to add a task to the robot schedules uses two different strategies
called earliest fit and latest fit. The earliest fit strategy looks for the first hole in
the list in which the task fits, while the latest fit looks for the last hole in which it
fits. A task fitsif the assigned time is later than the release time and earlier than the

128 Chapter 6. Promote-IT

deadline. This algorithm is based on the family of fit algorithms used for memory
management in operating systems [115]. The complexity of the algorithm is O(n).

Front-to-Back Strategy
1. Schedule the load task Ty;:

a)
b)

d)

Add D; to the resource constraints of T;.

Set the release time of Ty; to the lower bound of D; (ry; = uby;).

If ry; has already a value assigned to it, because it corresponds to a job
for an RSM that is currently being unloaded, then set the releasetimeto
the maximum of both values to guarantee that the job does not conflict
with the active unload of the RSM.

Set the deadline of Ty to the latest starting time of the read task (al,- =

dig — Pigy)-

Find the robot R, that can include Ty; earliest. For this purpose, the al-
gorithm uses the earliest-fit strategy on each of the robots that can load
drivei with the RSM and picks up the robot that provides the earliest fit.
If thereis an Ry that can include Ty;, assign thistime to Ty; and add R, to
the set of resource constraints of T;. Otherwise, undo the assignments
and stop.

2. Schedule the read task Ty:

a)
b)

Add D; to the resource constraints of T;.

Set the release time and assigned time of T to the finishing time of
the load task (ry; = &y + pyy and ay = ay + Puyj). The read task is
thus scheduled immediately after the load finishes. This starting timeis
valid, because the load task was scheduled with the LST of the read task
as deadline.

3. Schedule the unload task Ty;:

a)
b)

c)
d)

Add D; to the resource constraints of Ts.

Set the release time of Ty to the time at which the read task Ty finishes
(r3 = ay + Pig).

Set the deadline of T to infinite (dy = o).

Find the robot Ry that can include T3 earliest. If thereis an Ry that can

include Ty, assign this time to Ty and add Ry to the set of resource
constraints of Tg. Otherwise, undo the assignments and stop.

6.5 Resource Assignment 129

4. Update the value of the lower bound of D; to the time when the unload task
finishes (|b| =1rIg+ pgj).

Before executing step 1 the algorithm may have to schedule the unload of the drives.
If thejob isthefirst job assigned to the D; and drivei isloaded, then before schedul -
ing the load the a gorithm must schedul e the unload of the RSM loaded in the drive.
This task aready has a release time which was assigned when the read task was
scheduled at the beginning of the algorithm. Once this task is scheduled, update the
lower bound of D; and proceed to step 1.

If after executing step 4 there arejobs J, € J that have unload tasks that have not
been scheduled yet, then these tasks need to be scheduled. These situations appear
only when some |oaded drives have not been assigned to any job J; € 7.

The algorithm sorts these unload tasks using the release times of the tasks and
schedules them in arobot schedule as early as possible. The deadline of these tasks
isinfinite, because this situation can only be reached when the drive is not needed
for any other job than the one already active in the drive.

Back-to-Front Strategy
1. Schedule the unload task Ty;:

a) Add D; to the resource constraints of T.

b) Setthereleasetime of Ty to the earliest time that should provide enough

timeto schedule the read and load task in D; (I'3j =1b+ Pizj + mi nk{pkilj}).
If the drive isloaded or being loaded, then add as well the time needed
to unload task of the corresponding job J, (r5 = lb; + pig + ming{piyj} +
i { Puiau})-
The agorithm follows an optimistic approach and uses the minimum
time needed for the load task and for the unload of the loaded RSM. If
it is not possible to incorporate T into the schedules using these values,
then it will not be possible using other values either. However, succeed-
ing to incorporate T3 does not guarantee that the algorithm will be able
to schedule Ty using the robot that provides the minimum processing
time.

c) Set the deadline of Ty to the upper bound of D;, because the operation
must also fit in the window of D; (d3 = uby).

d) Find the robot Ry that can include T latest. For this purpose, the algo-
rithm uses the |l atest-fit strategy on each of the robots that can load drive
i with the RSM and picks up the robot that providesthe latest fit. If there

130 Chapter 6. Promote-IT

is an Ry that can include Tj;, assign this time to T3 and add Ry to the
set of resource constraints of Ty;. Otherwise, undo the assignments and
stop.

2. Schedule the read task Ty:

a) Add D; to the resource constraints of T;.

b) Set the release time of Ty to the earliest time that gives enough time to
schedule the load task in D;. ry = by + min{pyy;}. If the drive is loaded
or being loaded, then add as well the time needed to schedul e the unload
task of the corresponding job J, (ry = lb; + min{pyiaj} + Ming{Puiau})-

) Assign T the latest time at which it may start so that it is ready before
the unload begins (ay = dy—piy). If ay < ry, itisnot possibleto include
the read task in D;, so undo the assignments and stop.

3. Schedule the load task Ty;:

a) Add D; to the resource constraints of Ty;.

b) Set the releasetimeto Ib; (r; = Iby) if the drive is not loaded or being
loaded, and to ry; = lb; + min,{piau}, otherwise.
If ry already has a value assigned to it, because J; is ajob for an RSM
that is currently being unloaded, then set the release time to the maxi-
mum of both values to guarantee that the job does not conflict with the
active unload of the RSM.

c) Setthe dgadline of Ty to the latest time that will allow the read to start
intime (dy = ay).

d) Find the robot Ry that can include Ty latest. If there is an R, that can
include Ty, assign this time to Ty; and add Ry to the set of resource
constraints of Ty;. Otherwise, undo the assignments and stop.

4. Update the value of the upper bound of D; to the time at when the load task
starts (ub; = ay;).

After al the jobs in g have been scheduled, the algorithm still has to schedule
the unload tasks of the drives that are being loaded or aready loaded during the
computation of the schedule. There is at most one of such tasks per drive, so the
algorithm ssimply assigns to the deadline of each task the upper bound of D;. It then
sorts the tasks by decreasing order of deadline and tries to schedule them as late as
possible.

6.5 Resource Assignment 131

Example

Figure 6.8 shows an example of schedules constructed with the four scheduling
strategies. The jukebox hastwo identical drives and one robot. The drives and robot
are not busy at the time of building the schedule. There are four jobs to sched-
ule, which are identified in the example by the read tasks that need scheduling. To
simplify the example we assume that the load and unload tasks need constant time
independently from the RSM, robot and drive involved.

In all casesit is possible to build afeasible schedule, although the schedule built
in each case is different. The main differences can be seen between the schedules
built Front-to-Back and Back-to-Front. The B2F schedules have large idle times
when the resources are not assigned to any job. As we will show in Section 6.8,
these holes can be effectively used by the dispatcher.

When using EDF the job order is Jy, Jo, J3, and J4. When using ESTF it is Jy, J,,
J4, and J;. When using LDL thejob order is Jg, J3, Jo, and J; and when using LSTL
it iSJg, Ja, Jo, and Ji.

6.6 Medium Schedule

The medium schedule (M S) is the schedul e that indicates in which order the data of
an RSM must be read, once the RSM is loaded into a drive. The tasks to schedule
are requests for data blocks corresponding to the request units for the RSM. If the
same data block is requested more than once, then the deadline of the data block is
the one of the request unit with the earliest deadline. The data blocks do not overlap,
even if the request units originally were for overlapping data blocks.

The MSindicates the order in which the tasks will be executed and the latest time
at which each task must start executing. The time assigned to the first task in the
schedule indicates the latest time at which the RSM must be loaded in a drive and
the data must begin to be staged. We call this time the latest starting time (LST)
of the MS. Once the drive finishes reading the data of the first task, it continues
immediately with the rest in the order given by the schedule, because it does not
make sense to have the RSM loaded in adrive with pending tasksfor it and not read
thedata Thus, we eliminate all theidletimesin the original schedule. The resulting
processing time of the schedule is the sum of the transfer times for each data block
plus the sum of the access times needed to go from the data of one task to the next.

As explained in the description of the formal model (see Section 5.2.4), the goal
of our algorithm isto build the MS with the highest LST, in order to provide flexi-
bility to incorporate the job corresponding to the RSM in the schedule.

132 Chapter 6. Promote-IT

T24

Read [Toa}

tasks to |
schedule | T2z |’
2l
rRl (Mool [Taal Ty Tys] [Taal [Tap[T4l Tsa
EDF < D, TuallodTay Tya| To5 [Tas Tyl Toa | Taa.
D, T12| LPY! |T32
rRl |T11| |T31|T12|T14| m m
ESTFS D, JuallodTes Tyl Tou | Tos
Lo, LY Py P A PP PP LYY
rRl Ti m |T31|T32|T13|T14|
LDL { b, _Tualfed T Tis T2s
D, T12| PP | Ts, §T14| Toa |
rRl Ti Ty |T31|T32|T14|T13|
LSTLY D, Tl T o[Tos
D, T12| LPY; | Top Ty | Tou |

Figure 6.8: Example of schedule construction with the different strategies.

Theagorithm usesthe LDL strategy to build the schedule. The tasks are sorted by
deadline and when the deadline of two tasksis the same, they are further sorted by
offset. The algorithm incorporates the tasks to the schedule back-to-front based on
deadline and when the deadline is the same, it tries to minimize the access time by
using a SCAN algorithm (see Section 2.2.5). The algorithm we propose for building
the MS is somewhat similar to the SCAN-EDF agorithm of Reddy et al. that we
discussed in Section 2.2.5.

Figure 6.9 shows an example of the medium schedules built for an RSM using
two different drives. Drive 2 istwice as fast as Drive 1. The access function is very
simple and the same for both drives. The top of the graphic shows the tasks to
schedule. The deadline of the tasksis indicated by a down arrow and the offset and
size are given inside the task bars. Each task shows the time needed to transfer the

6.6 Medium Schedule 133

O tyanster(1,0,5)=s/4 [tiranster(2,0,5)=S/5 O taccess(d:05,04)=| 05-04]/1000

Tasks

| 100040 | |o10| 10030 | 1020 [| 3028 |

MS for
Drive 1

MS for
Drive 2

Ist p d

Figure 6.9: Example of the medium schedules built for two drives. Drive 2 istwice as fast
asDrive 1.

data using both drives—the lighter blocks show the time needed when using D, and
the darker blocks the time needed when using D;.

Inthe MSfor Drive 1 some tasks are ‘ pushed to the front’, and the LST isearlier
than it iswith Drive 2. Instead in the MS of Drive 2, the LST is simply the one that
should have resulted from scheduling a set only with the first task. As shown under
the MSfor Drive 2, the total processing time p of the MS is computed without the
idle times, because once the schedule is dispatched, each task is executed as early
as possible. The deadline d of the MSisthe time by which al the data of the RSM
must be staged. The values of p and d are used to determine the processing time and
deadline of the read task T.

If the accesstimeis constant, this algorithm computes an optimal schedule. How-
ever, the access times are not constant. Therefore, the problem is NP-hard and, so,
it isnot possible to compute an optimal solution in polynomial time. In this casethe
solutions our algorithm provides are pseudo-optimal. The difference between the

134 Chapter 6. Promote-IT

optimal solution and our solution is given by the difference in reading the tasks in
the perfect order, and in the order given by the algorithm.

The perfect order is given by using a scan algorithm that reads the data as it
advances in its sweep through the RSM. The perfect order has got as lower bound
performing n times the lowest step possible between one data-block and the next,
while the schedul e produced by the algorithm may have the tasksin such away that
it performs every time the maximum possible step. The solution is, thus, not worse
than n(tMX . — tMn_). This bound is much higher than the real difference, because
not all access times will influence the value of the LST. The LST isinfluenced only
in the cases in which the tasks are being pushed to the front of the schedule by
tasks that have |ater deadlines (i.e., when min(lst, d;) = Ist). Thisis mainly the case
when several tasks have the same deadline, but the tasks with the same deadline are
incorporated using the scan strategy that in most cases minimizes the access time.
Furthermore, when using optical disks, as is our main study case, the access time
does not vary much, causing only a small difference from the optimum.

A further optimization to our algorithm is to run it for a second time with re-
defined values of the deadline of some tasks. We assign a new deadline d to the
tasks whose deadline is later than the deadline of the MS. This new deadline does
not violate the restrictions of those tasks, because their deadlines are after d. In this
way there are more tasks with the same deadline at thefirst step of the computation.
Thus, there are more possibilities to minimize the time spent in jumping between
tasks, because the set of tasks on which the SCAN algorithm is performed is bigger.

6.7 Complexity Analysis

We analyse here the total complexity of the scheduling algorithm. We present a
complexity analysis of each step and show finally that the total complexity is low.
We will use the following notation:

n=|U’| Number of request unitsto schedule
m Number of drivesin the jukebox

S Number of RSM in the jukebox, which provides an upper bound to |71,
the number of jobsto schedule

u Number of tasks in a medium schedule

The complexity of computing the job set is O(n + m), because each request unit
in U must be included in the appropriate job. Additionally, there is the possibility

6.7 Complexity Analysis 135

of having an extra job per busy drive, but given that mis a constant, the resulting
complexity of this step isO(n).

The computation of a medium schedule has complexity O(u - log u). This com-
plexity comes from sorting the tasksto incorporate into the M S. An upper-bound for
u isthe number of request unitsin U’, so the complexity of thisstep isO(n - logn).

The scheduler must compute m- n medium schedules. One MSfor eachjobin
using each drive. The upper bound of | 7| iss. So, the complexity of computing all
the medium schedulesisO(m- s- n- logn). The values of mand s are constant, but
wewill not ignore them, because they reflect the influence of the size of the jukebox
in the performance. In the implementation of the algorithm, we do not compute an
MS for each drive in the jukebox, but only for each different drive model, so m can
be replaced with nY < m.

Incorporating one job to the schedule once the drive has been determined has
complexity O(2 - 2 -), because the fit algorithm on the robot schedule is executed
twice, once for the load task and once for the unload task. The maximum number
of tasksisthe robot scheduleis?2 - s.

The maximum number of nodes visited when traversing thetreeiss-m!-m. So the
complexity of building the scheduleisO(s-m! - m-2-2-s), which can be simplified
to O(s? - m! - m). It isimportant to note that for a given system, all the elementsin
this formula are constants.

Finally, we have shown in Section 6.1 that the heuristic to determine the candidate
time will execute at most log,(d; — to)/< steps.

The complexity of the algorithmis:

d —to
E

O(log(Y(n+n-logn+&-m! -m)) (6.5)

If we remove the constants, the resulting complexity is
d- 9 (n-logn)) (6.6)

&

O(log(

6.8 Dispatcher

The dispatcher guarantees that the tasks are sent to the jukebox controller in time.
Furthermore, it also tries to dispatch each task as early as possible (ASAP), so that
the resources are not idle. The dispatcher can modify the active schedule aslong as
no task in the schedule is delayed and the sequence dependencies are respected.
The dispatcher uses the *holes’ in the schedules to dispatch early tasks. The big-
ger the holes, the more chances it has to dispatch tasks early. Therefore, the dis-
patcher works better in combination with the Back-to-Front strategies, because they

136 Chapter 6. Promote-IT

create big holes in the schedules. The dispatcher also profits from the fact that the
schedules are built using the worst-case times for the different tasks and, thus, some
resources becomeidle earlier than planned and can start processing the tasks sched-
uled for later moments,

If the scheduler is idle and there are idle resources, the dispatcher tries to dis-
patch the next task scheduled for the idle resources as soon as possible. It can only
dispatch an early task to aresource if the task can be executed immediately.

There are two conditions that must hold in the dispatched schedule. The first
condition is that no task must be dispatched at a later time than its assigned time.
The dispatcher does not compute the schedule again, and does not know about the
deadlines of the tasks. It simply knows the times that the tasks were assigned by
the scheduler and uses those assigned times as deadlines for dispatching. Thus, if
no task is dispatched later that its assigned time, no task misses its deadline. The
second condition is that the tasks of different jobs must not interleave in the use of
the drives.

Every time atask is dispatched to the jukebox, the dispatcher eliminates it from
the schedule. The rest of the tasks are not modified. So, at each moment, the tasks
in the schedul e represent only the tasks that still need to be dispatched. If tn, iSthe
present time, the assigned time of the first task in each of the resources schedules
must be later than tyoy.

The dispatcher decides which task to dispatch next by analyzing the drive sched-
ules. The dispatcher is always able to dispatch the first task of a drive early when
this task corresponds to a read, because the RSM needed is already loaded and the
only resource needed isthe drive. If the first task of adriveisnot aread, it can only
dispatch the task if the robot needed for the task Ry is also idle and either the cor-
responding robot task is also the first task in Ry, or there is enough slack to execute
the task before the assigned time of the first task of R.

In order to be fair with the early dispatching of tasks scheduled for different
drives, the dispatcher sorts the drive schedules corresponding to idle drives by in-
creasing time assigned to the first task of each schedule.

The sequence of the drive schedules does not change after dispatching, but the
sequence of the robot schedules may be different than the sequence defined by the
scheduler.

Figure 6.10 shows the effect of the dispatcher. At the top we show the schedule
built using LDL for the example in Figure 6.8. No requests arrive during the execu-
tion of the schedule, so the active schedule does not change. The dispatcher starts
by dispatching T, 1 early, because both R, and D, are idle and the assigned time of
T, isearlier than the assigned time of T, ,. The dispatcher must now wait until the
robot becomesidle again. At that moment it dispatches the read task T,; to D; and

6.8 Dispatcher 137

R, 1Tt T [TaalTanl Tya[Tyl

(]

2 D | e

59 D, Tl Tas Tis Tos
“ D, Tl LPY: | Tao Ty T4 |

jump

D o | R Tl Tio(Taa(Tis T3 Ts2(Tia Tsa

£ S

8 -O H H H H

gg D, Talfod Toy Tigl Tog [Tss

0n O

= N H H H H

o D, Ty Ty | Tap Tyl Tou | Taa.

Figure 6.10: Example of early dispatching.

the load task T, , corresponding to the robot and D,. When the execution of T,
finishes, it dispatches the read task T, to D, and the next task corresponding to Dy,
Ts1, because D, is again idle. When the execution of Ts; finishes, only D, isidle,
so the dispatcher dispatches the next task for Dy, T13. When Ty 3 finishes, D, is till
busy, so the next task dispatched, T332, again corresponds to D;. When the robot is
idle again after executing T3 3, D, isidle aswell, so the dispatcher can dispatch the
next task for Do, T3». Finally it dispatches one by one the tasks corresponding to J,
scheduled on D».

There are two types of events that trigger the dispatcher to dispatch tasks to the
jukebox controller. The first type of event indicates that the deadline to dispatch
atask in the schedule has been reached. The second type of event indicates that a
resource isidle and, thus, may execute atask immediately. The dispatcher interrupts
the computation of a new schedule when the first type of events occurs.

6.9 Implementation Notes

For efficiency reasons the implementation of Promote-IT includes the following
features that are not part of the algorithm described in this chapter:

e The scheduler computes a medium schedule per drive model in the jukebox
instead of per drive. In this way the number of MS computed for each job is
smaller.

2 Thistask is not shown in the original schedule, because it is assigned atime near infinite.

138 Chapter 6. Promote-IT

e To simplify theimplementation of the scheduling algorithm we have removed
the possibility of having two different jobs for the same RSM. Thus, when a
request arrives involving an RSM that is being unloaded from a drive, the
scheduler puts the request in the queue of unscheduled requests until the un-
load of the RSM finishes. To provide first-come-first-serve fairness to the re-
quest that is waiting for the unload to finish, the scheduler puts also all the
other incoming requests on-hold during the duration of the unload.

e The dispatcher dispatches all the commands to read the data from an RSM at
once instead of one by one as described in Section 6.8. The drive controllers
have a queue where they store the commands that need to be executed. The
scheduler considers the time by which the drive will be available to be the
time by which all the commands in the queue of the drive will have been
executed.

An advantage of dispatching all the read commands at once is that the dis-
patcher does not need to be informed when the reading of each request unit
finishes. When multiple small files are read, this optimization makes a big
difference in the number of events generated in the system.

A disadvantage of dispatching all the commands at once is that when a new
request comes for an RSM loaded in adrive, the scheduler cannot reschedule
the other tasks for the RSM that have not yet been executed. Therefore, the
only request unitsin U’ for the RSM will be those of the new request.

6.10 Comparison of the Strategies

In Section 6.2 we showed that no strategy is absolutely superior to the others. In
this section we show that in general ESTF is the best strategy. However, when the
system load is high and the robot is a strong bottleneck, LDL seems to perform
better. When the system load is low, al strategies show a similar performance. The
performance of ESTF and LDL is more stable and predictabl e than that of EDF and
LSTL. We believe that the reason could be that both in ESTF and LDL we are using
the more natural parameter to sort the tasks: the starting time when incorporating
Front-to-Back and the deadline when incorporating Back-to-Front.

In Chapter 9 we show that the performance of the two best strategies of Promote-
IT, ESTF and LDL, is better than the performance of the other heuristic schedulers
and near the performance of the optimal scheduler.

We will analyze two examples that vary in the degree in which the robot is the
bottleneck of the system. For each case we will show first the performance of the
strategies under alow and medium load. We will then show the performance under

6.10 Comparison of the Strategies 139

highload. In thesefirst two cases the system does not reject requests. Finally wewill
show the performance of the system when requests can be rejected during overload
situations. When rejecting requests the performance of all the strategiesis similar.

Regarding the main parameter for evaluating the strategies, the response time,
the graphics show the mean response time and the maximum response time for
90% of the requests. The standard deviation is big, therefore, the mean response
time cannot be used as only parameter to determine the quality of the strategies.
The maximum response time for 90% of the requests indicates the maximum time
that the users have to wait in 90% of the cases. Thus, it provides an idea of worst-
case behaviour pruning the exceptionally bad cases. Thereally bad cases are pruned
when the system can regject requests. In general, the curve of the mean responsetime
and the maximum for 90% of the requests are very similar for low and medium
loads, but when under high loads the maximum for 90% of the requests indicates
the performance of the schedulers better, because it is more resilient to a few bad
Cases.

When regjecting requests we show the regjection ratio, which is measured as the
percentage of rejected requests over the total number of requests. In order to be
able to reject requests, the requests al so specify a deadline and maximum confirma-
tion time. In the two cases shown in this section the deadline is 5 minutes and the
maximum confirmation timeis 30 seconds.

The graphicsfor the mean robot and drive utilization show the percentage of time
that the robot and drives are used in a productive way during the run. For the robot,
it indicates the percentage of time it is loading or unloading disks, while for the
drives it means the time spent on reading data.

Independently of the jukebox architecture and test set, the mean computing time
of the F2B strategies is shorter than that of the B2F strategies. B2F requires more
computation than F2B because it needs to backtrack more often and is deeper into
building the schedule when it discovers resource conflicts. First, the number of pos-
sible schedules is greater for B2F because it aways starts with m equally eligible
drivesfor thefirst job. F2B only needs to decide between the drives that are actually
idle at the moment of computing the schedule. Second, B2F generally discoversre-
source conflicts later when it attempts to incorporate the most restrictive jobs. F2B
starts with these most restrictive jobs and discovers the conflicts earlier. However,
sometimes when the system load is high and the system cannot reject requests, the
B2F strategies can find schedules than the F2B strategies cannot and the mean con-
firmation time of B2F is shorter than that of the F2B strategies.

In genera, the resource utilization of the strategies is nearly the same (in many
plotsit even appears completely overlapping). Furthermore, the resource utilization
grows linearly with the system load until the system approaches an overload situ-
ation and the resource utilization curves flatten alittle. When the scheduler is able

140 Chapter 6. Promote-IT

to reject requests, the resource utilization of the strategies differs more. In this case,
however, the utilization is influenced by the particul ar requests rejected.

Case 1: Shared Robot is a Strong Bottleneck

We first show a case where the robot is a strong bottleneck is the system. While the
robot utilization reaches 95%, the drive utilization isless than 10%.

The request set consists of 1000 ASAP requests that follow a Zipf distribution.
The requests are generated following the proportions: 10% long videos, 40% short
videos, 30% music, and 20% discrete data. Thisis the same proportion of data that
is stored in the jukebox. Section 8.6 explains how the jukebox contents and requests
are generated. The data is stored on single-layered DVD-ROM. The jukebox has
four identical driveswith transfer speed intherange[7.9, 20.5] MBps. Theload time
isin the range [21.8, 24.9] seconds and the unload time isin the range [15.4, 18.5]
seconds.

The size of the cache is 10% of the jukebox capacity. The average cache-hit rate
IS 62%. The cache-hit rate is nearly constant, independently of the scheduler used
or the system load.

Figure 6.11 shows that the performance of the two Front-to-Back strategies is
better than that of the two Back-to-Front strategies when the load is medium or low.
Under these load circumstances, ESTF performs better than EDF.

Figure 6.12 shows that when the system load passes a certain threshold, the two
Back-to-Front strategies perform better. The robot utilization degrades steeply after
that threshold, because the system isin an overload situation.

Finally, Figure 6.13 shows that, when regjecting requests during overload situa-
tions, all the strategies perform much better and thereis asmall differencein favour
of the F2B strategies. Therejection ratio that allows thisimprovement isvery small:
less than 3% (shown in Figure 6.13(a)).

Case 2: Shared Robot is not a Bottleneck

In this casethereis not such an imbal ance between the robot utilization and the drive
utilization, asin the previous example. The robot utilization reaches 75%, while the
drive utilization reaches 50%.

The request set consists of 1000 ASAP requests that follow a Zipf distribution.
Therequests were generated following the proportions: 30% long videos, 30% short
videos, 30% music, and 10% discrete data. Thisisthe same proportion of datathatis
stored in the jukebox. The datais stored in double-layered DV D-ROM. The jukebox
has four identical drives with transfer speed of 5.11 MBps. The load timeisin the
range [21.8, 24.9] seconds and the unload timeisin the range [14.3, 17.4] seconds.

6.10 Comparison of the Strategies 141

[LSTL™ ©

20 30 40 50 60 70 80
System load (requests/hour)

(a) Mean response time.

I
o

LSTL

=
LESTF e]
05 'EDF L
@ LDL —3&— =
S 04| A /]
§ 03 A /
2 j
.§ 02 i x
01} 4 S
oo '
0

20 30 40 50 60 70 80
System load (requests/hour)

(c) Mean confirmation time.

el NS
80 | ESTF e
EDF -
70 LDL —+—
(]
Feo
o
Pl
40 L
30 |
20

20 30 40 50 60 70 80
System load (requests/hour)

(e) Mean robot utilization.

[o2]
[&]

LSTL o - ‘ ‘ L

(610}
a O

Time (seconds)
5 & 8

20 30 40 50 60 70 80
System load (requests/hour)

(b) Maximum response time for 90% of the re-

quests.
0.09 ‘ ‘ ‘ | |
LSTL | p
0.08 | ESTF /)
EDF -x o /o
% 007 f LDL —+— /]
ko]
oy
§ 0.06 | /
a8
T 005t -
£ /
F 004 -
o 1
0.03 | g
0.02 ‘ ‘

20 30 40 50 60 70 80
System load (requests/hour)

(d) Mean computing time.

8 s =
7 | ESTF e
EDF -
w6 DL ——
g
o5
o
E,
3,
2

20 30 40 50 60 70 80
System load (requests/hour)

(f) Mean drive utilization.

Figure 6.11: Performance of the strategies under low and medium load when the shared

robot is a strong bottleneck (case 1).

142

Chapter 6. Promote-IT

300

Time (seconds)
H 8 8
o o o

6]
o

0

30

8
S

_ . e

LSTL ©
| ESTF ¥
EDF = .
LDL —+—— !
I .

:‘T]

b
i

20 30 40 50 60 70 80 90 100

System load (requests/hour)

(a) Mean response time.

25

Time (seconds)
[= N
o (6] o

[é)]

LSTL —®
ESTF -
EDF —x
LDL —+—

- i

g

s‘.’

/
o

20 30 40 50 60 70 80 90 100

100
90
80

Percentage

30 r

20

70 r
60 r
50 r

System load (requests/hour)

(c) Mean confirmation time.

LSTL ©
L ESTF e
EDF -

| LDL —+—

) ‘ ee

20 30 40 50 60 70 80 90 100

System load (requests/hour)

(e) Mean robot utilization.

Time (seconds)

1000
900
800
700

600 r
500 r
400
300
200 r
100 ¢

0

[LsTL = x|
ESTF - .
| EDF x [
LLDL —+—
$

H

s
el

20 30 40 50 60 70 80 90 100

System load (requests/hour)

(b) Maximum response time for 90% of the re-
quests.

Time (seconds)

Percentage
N W A~ 01O N 00 ©

16

14

12+

1 L
08
06
04 ¢
02

LSTL B
r ESTF e
EDF -
LDL ——

20 30 40 50 60 70 80 90 100

=
o

System load (requests/hour)

(d) Mean computing time.

LSTL ©
L ESTF e
EDF -

| LDL —+—

System load (requests/hour)

(f) Mean drive utilization.

20 30 40 5 60 70 80 90 100

Figure 6.12: Performance of the strategies as the load increases when the shared robot is
astrong bottleneck (case 1).

6.10 Comparison of the Strategies

143

3 — 18

LSTL o LSTL o B
o5 | ESTF e] 16 [ESTF e
> [EDF -ox / 14 | EDF -ox
w 2 lLDL gllziLDL —
oy
g ‘ g 1t
g 15 ¢ ii,‘ 3 o8l
& " £,
1+ = gi L
05t ol o
02t o —"
ol =g 0 R i
45 50 55 60 65 70 45 50 55 60 65 70 75 80 85 90 95 100
System load (requests’hour) System load (requests/hour)
() Rejection ratio. (b) Mean confirmation time.
28— 100 —
LSTL ~® g5 | LSTL @ |
26 | ESTF e ESTF -~ o
EDF = 9 r EDF =]
@24 DL —— g5 | LDL ———
e ()
&2 2 80|
g20 S
L — g 70
F 18t s 65 ¢
5l L | 60 |
Mpler—n oL
45 50 55 60 65 70 75 80 85 90 95 100 45 50 55 60 65 70 75 80 85 90 95 100
System load (requests/hour) System load (requests/hour)
(c) Mean response time. (d) Mean robot utilization.
2(5)7LS‘TL‘ = T T] g'giLS‘TL‘ e]
ESTF ---e / ESTF ---e T
75 t EDF -x oY 4 85 [EDF - !
- 4 A+ L 3
%) 70 | LDL j ; | o g L LDL *
565t — oA 75¢
gieo . e V. g 7|
255 | /] B 65|
=50 ¢ "] 6
45 | I] 55
HL— 45—
45 50 55 60 65 70 75 80 85 90 95 100 45 50 55 60 65 70 75 80 85 90 95 100
System load (requests/hour) System load (requests/hour)
(e) Maximum response time for 90% of the re- (f) Mean drive utilization.
quests.

Figure 6.13: Performance of the strategies when rejecting requests when the shared robot
isastrong bottleneck (case 1).

144 Chapter 6. Promote-1T

Time (seconds)

8 s s
70 - ESTF .
EDF --x
60 | LDL —+—
50 t
40 L
30t
Wb ¢ g
10 —_—
30 35 40 45 50 55 60 65 70 75
System load (requests/hour)
() Mean response time.
7 T T
LSTL o
6 | ESTF e
EDF -x
%5 LDL —+—
e]
c
54
\GE.J/?’ = //
2 P f//"‘
o '%//
1 X
30 35 40 45 50 55 60 65 70 75
System load (requests/hour)
(c) Mean confirmation time.
st s
60 r ESTF ---e
EDF --x
SripL
©50 |
545 |
(8]
& 40
35t
30t
S
25

System load (requests/hour)

(e) Mean robot utilization.

30 35 40 45 50 55 60 65 70 75

120
110
100
90 r
80 r
70 r
60
50

Time (seconds)

| LDL —+—

[

LsfL —e—
ESTF - *
EDF —x B

«

40 T Y SO B
30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(b) Maximum response time for 90% of the re-

quests.
02 st o T X
0.18 [ESTF e ’
0.16 - EDF % .
2 014 (DL —— I
g 012 |
Y 01r LK * 1
1S L * . |
E o08 R) .
0.06 | ¥]
0.04 + e g Lo
T e
0.02

System load (requests/hour)

(d) Mean computing time.

30 35 40 45 50 55 60 65 70 75

B st s
| ESTF e
4T EDF o
o35 PH T
g
@ 30
o
E 25 L
20}
w
15

System load (requests/hour)

(f) Mean drive utilization.

30 35 40 45 50 55 60 65 70 75

Figure 6.14: Performance of the strategies under low and medium load when the shared

robot is not a bottleneck (case 2).

6.10 Comparison of the Strategies

145

1600

350

LSTL' o ‘ ‘ ‘ LSTL =
300 | ESTF X 1400 | ESTF i
EDF -x ; EDF -x
§250 [LDL —+— 7 1200 1| pp ——
S 200 / € 1000
8 J 8 80|
150 t L
g . / 2 600
€ iy £
100 * '/// , F 400 +
50 + X o 200 |
0 ii————i—ww&r-@*"‘*f’;ﬁ//% o 0 D
30 40 5 60 70 8 90 30 40 50 60 70 8 90
System load (requests/hour) System load (requests/hour)
(a) Mean response time. (b) Maximum response time for 90% of the re-
quests.
ig [LsTL o ‘ ‘] S TS T—
ESTF - 0.6 | ESTF -~
16 f EDF - 1 EDF - oy
%14 | LDL —+—] % 05 LDL —+— /
S} E *
é é 04 ¢ ;
~— lo [~—
g 8+ g 03 r
= 6 F 02+t 0. *
41 0.1 “
L)] LT S
cz) T S gl Qe e ‘
30 40 50 60 70 8 90 30 40 50 60 70 8 90
System load (requests/hour) System load (requests/hour)
(c) Mean confirmation time. (d) Mean computing time.
?g [LSTL™ ©) S s
ESTF ---e : 50 | ESTF ---e .
70 T EDF % 45 | EDF
65 LDL —+— LDL ——
(9] L (9]
Eol g0
5] @ 35
O 50+ O
$ast 30t
40 | 25 L
35t
30 | 207
i
25" : : : : : 15 : : : : :
30 40 50 60 70 8 90 30 40 50 60 70 8 90
System load (requests/hour) System load (requests/hour)
(e) Mean robot utilization. (f) Mean drive utilization.

Figure 6.15: Performance of the strategies as the load increases when he shared robot isa

not a bottleneck (case 2).

146 Chapter 6. Promote-IT

90

LSTL o
4 [ESTF -~
35 L EDF o
LDL —+—
o 37t
g 25t
(8] 2 L
gl "
1+ e)
05 | X e
30 40 5 60 70 8
System load (requests/hour)
(a) Rejection ratio.
32 ‘
LSTL o
30 | ESTF ---e
og | EDF -

(o]

Time (seconds)
N NN
N B

]
o

20

18 4
16 : : : : :
30 40 50 60 70 80
System load (requests/hour)
(c) Mean response time.
95 :
go | LSTL =
ESTF -
85 EDF %
%80 rLDL —+—
275t
g 70
52
Fo5t ///E/ﬁ o
50 /ﬁ e %
45§
40

30 40 50 60 70
System load (requests/hour)

(e) Maximum response time for 90% of the re-

quests.

80

90

Time (seconds)

Percentage

[«2)

[&)]

I

w

N

LSTL = i
| ESTF o |
EDF -—x
| LDL —+—
e
L5

i
R)

30 40 50 60 70 80 90

System load (requests/hour)

(b) Mean confirmation time.

LSTL 2]
[ESTF o
| EDF
LLDL —+—

30 40 50 60 70 80 90
System load (requests/hour)

(d) Mean robot utilization.

LSTL s |
| ESTF e
EDF % .‘/‘/,/v:/
LLDL ——)

30 40 50 60 70 80 920
System load (requests/hour)

(f) Mean drive utilization.

Figure 6.16: Performance of the strategies when rejecting requests when the shared robot

is not a bottleneck (case 2).

6.10 Comparison of the Strategies

147

The size of the cache is 10% of the jukebox capacity. The average cache-hit rate
is 60%. The cache-hit rate is nearly constant, independently of the scheduler used
or the system load.

Figures 6.14 and 6.15 show that ESTF always performs best, followed by LDL.
Figure 6.16 shows that the performance of all strategies is similar when rejecting
some requests. The regjection ratio is less than 4.5% as shown in Figure 6.16(a),
however, not al the strategies have the same rgjection ratio. EDF and LSTL have a
higher rejection ratio than ESTF and LDL, which explains the fact that the response
time of the two former strategiesis slightly lower.

6.11 Summary

This chapter explained in detail how Promote-IT builds the schedules. It discussed
the four strategies that Promote-IT can use to incorporate the tasks to the schedule:
earliest starting time first (ESTF), earliest deadline first (EDF), latest deadline last
(LDL), and latest starting time last (LSTL). The former two strategies incorporate
the tasks to the schedule Front-to-Back, scheduling each task as early as possible.
The latter two incorporate the tasks Back-to-Front, scheduling each task as late as
possible. When incorporating the tasks Back-to-Front, the resulting schedule has
idle times that can be effectively used by the early dispatcher. The use of the early
dispatcher makes Back-to-Front strategies competitive, in opposition to the results
showed by Lau et al. for the conservative strategy (see Section 2.2.1) where no early
dispatcher was used.

The chapter shows that no strategy is absolutely better than the others. However,
ESTF performs best in most cases, and when the system load is very high it is con-
venient to use LDL. The difference in performance between the different strategies
issmall when compared with other schedulers. In Chapter 9 we show the superiority
of Promote-IT over the other heuristic schedulers.

148 Chapter 6. Promote-IT

Chapter 7

Alternative Schedulers

This chapter presents two jukebox schedulers that we developed to evaluate the
performance of Promote-IT: the jukebox early quantum scheduler and the optimal
scheduler. The significance of these two schedulersis that they are based on differ-
ent paradigms than Promote-IT.

The jukebox early quantum scheduler (JEQS) is a periodic scheduler that uses
the scheduling theory about early quantum tasks presented in [51]. To our best
knowledge, JEQS isthe only correct periodic jukebox scheduler. Aswe discussed in
Chapter 2, the other periodic jukebox schedulers presented in the literature do not
deal correctly with the resource-contention problem. Thus, they cannot guarantee
that the deadlines are always met.

Although JEQS performsworse than Promote-IT, it has the advantage that it uses
avery simple scheduling algorithm. In Section 9.1 we show that the comparatively
bad performance of JEQS isintrinsic to any periodic jukebox scheduler.

The optimal scheduler isascheduler that computes a schedule with the minimum
response time for each request. This scheduler solves the switch/no-switch conflict
presented in Chapter 5 and always finds an optimal schedule. The problem with
this scheduler is that it may need several days to compute a schedule. Therefore,
this scheduler is only useful for assessing the quality of the heuristic schedulers
presented in this dissertation.

The optimal scheduler was developed mainly by Sandro Etalle. Ferdy Hanssen
implemented a first version of the jukebox early quantum scheduler that assumed
that secondary storage was used only as a buffer for the jukebox and not as cache.
His work on administering these buffersis reported in [51].

This chapter also presentsthe extensions to some existing jukebox schedulers: the
extended aggressive strategy, the extended conservative strategy and Fully-Staged-
Before-Starting. These three jukebox schedulers are aperiodic schedulers that are
used for comparison in Chapter 9 to highlight the advantages of different design
elements of Promote-IT. Compared to Promote-I T, the extended aggressive strategy
couples the unload and load operations in a single switch operation, the extended

149

conservative strategy does not use an early dispatcher, and Fully-Staged-Before-
Starting does not use pipelining.

7.1 Jukebox Early Quantum Scheduler

The jukebox early quantum scheduler (JEQS) is a periodic scheduler based on the
periodic quantum model presented in Section 5.6. In thismodel, the robot and drives
are used in acyclic way and the time is divided in constant units called quanta. A
quantum Q is the maximum time needed to unload and load all the drives. An RSM
isloaded in adrive for a fixed period of time, corresponding to the time needed to
switch the media on the other drives (%Q). During this time the drive can read
data from the RSM.

A request is treated as a periodic task 7. The period of the task must guarantee
that enough data is available in the buffer for the user to consume the data at the
bandwidth specified in the request. The processing time of the task C; is always Q.
The period of the task T; is obtained from computing how often the buffers need
to be filled so that the user does not run out of data. The period depends on the
bandwidth required by the request and the bandwidth offered by the drive.

JEQS uses the scheduling theory on early quantumtasks (EQT) presented in [51].
An early quantum task is atask whose first instance is executed in the next quantum
after its arrival and the rest of the instances are scheduled in a normal periodic way
with the release time immediately after the first execution. The role of the early
guantum tasks is to serve incoming tasks as early as possible when these tasks have
a clear initialization phase, as pre-filling a buffer. An application of EQTSs is to
guarantee the in-time filling of buffersin a continuous-media file system.

JEQS builds the schedul es assuming the existence of buffers that need to befilled
in time for the user to access the data. However, if adrive is not 100% utilized, the
schedulefor thedrivewill haveidletimes. The dispatcher usestheseidletimestofill
the buffers of the active tasks earlier than scheduled. Thus, the data of the requests
can beread in fewer instances than initially computed. Thisallowsthetasksto leave
the scheduler earlier and increase the bandwidth available on the drive schedulesfor
future requests. The dispatcher reads the data as soon as possible, whenever thereis
enough bandwidth available in the jukebox.

7.1.1 Scheduler

The scheduler builds a separate schedule for each drive. When a new request ry
arrives the scheduler tries to include it in the schedule of one of the drives. The
scheduler first tries to include the corresponding task 7y as an early quantum task

150 Chapter 7. Alternative Schedulers

(EQT) in the schedule of one of the drives. An early quantum task is a task whose
first instance is executed in the next cycle of adrive and the rest of the instances are
scheduled in anormal periodic way with the release time immediately after the first
execution. If T, can be incorporated as an EQT on drive i, then the first buffer will
be filled at the end of the next cycle of drivei. At that moment the user may start
consuming the data. If the task is scheduled on drive i without using an EQT, then
the starting time is a the end of thefirst instance of the task. Thus, the starting time
of the request (sty) isthe starting time of the next cycle of drivei, plusthe period of
the task Tk.

The scheduler guarantees that an RSM never needs to be loaded in different
drives, by using the same drive to process all the tasks involving the same RSM.
When using double-sided disks, al the tasks for the same disk are assigned the
same drive. When atask is scheduled for the first time it is assigned a drive and all
the instances of the task will be executed on that drive. The scheduler distinguishes
a new task from the others, because in the former p, will not indicate the drive to
which the task is assigned.

Asdiscussed in Section 5.6, using quantum tasks has the advantage that, although
the tasks are non-preemptable, they can be treated as preemptable during the feasi-
bility analysis. Therefore, we can use a simple variation of EDF [68], called quan-
tum earliest deadline first (QEDF), to determine if the task set is schedulable. EDF
is optimal and very simple to compute. These properties also hold for QEDF, be-
cause QEDF is a specia case of EDF where all tasks have the same execution time
Ci = Q. Furthermore, using guantum tasks has the benefit that under certain circum-
stances we can fill the first buffer of a stream and allow an incoming task to start
executing as soon as possible.

The only condition to treat the tasks as preemptable is that release times of the
tasks scheduled on drive i aways coincide with the beginning of acyclefor drivei.
We can guarantee that the release times of the tasks alwaysfall at the beginning of a
cycle, if the release time of thefirst instance is at the beginning of a cycle, because
the period of the tasks are multiples of Q. Therefore, atask which is executing in a
drive never needs to be preempted.

Scheduling Algorithm

The algorithm assumes that the tasks are normal periodic tasksthat run indefinitely,
asisthe case in classical real-time scheduling theory. It does not take into account
that the number of instances of each task is limited. Instead, it waits until a task
finishes its execution and the last instance reaches the deadline, to remove the task
from the task set and consider the bandwidth used by the task available.

7.1 Jukebox Early Quantum Scheduler 151

Using this simplification has the advantage that it is extremely simple to deter-
mine if a request is schedulable. However, the scheduler is unable to efficiently
schedule requests with starting times far into the future. The scheduler is only able
to decide about the schedulability of arequest at the starting time of the next cycle
of each drive. Another problemisthat the scheduler cannot schedul e requests which
need the bandwidth used at present by another task, even if that task will finish its
execution soon. In many cases, this last restriction prevents JEQS from providing
an immediate confirmation to the user about the schedulability of the request.

The scheduler will try at most 2 m possibl e starting times to schedule an incoming
request. In the case of an ASAP request, it first tries to incorporate the task to start
in the next cycle of adrive, using an early quantum task. If this fails, the scheduler
attempts to schedule it as a normal quantum task. The scheduler tries the drives in
the order in which they will start the next cycle. The cycle of a drive begins with
the unloading of the RSM loaded in the drive, the loading of the new RSM and
finally the reading of the data. Let us assume that the next drive to start acycleis
Drive 1 and that the cycle of Drive 1 will start in time tyeq. The starting times that
the scheduler will attempt are:

VI<i<m|(thee + (i — 1) (tnag + thay) + Q A

thed + (I = 1) (tianad + tioag) + Tk)
When transforming the request units into tasks, we assign to 7 the release time
re = sty — Tx. Thus, when using an EQT it seems that the first instance of 7y is
waiting for execution. This allows us to represent that the first instance of the task
has an *almost immediate’ deadline and the next instances behave normally.

When scheduling anon-ASAP request, the schedul er tries to schedul e the request
on the drive that will permit to meet the deadline of the request at the latest time.
If possible, the scheduler will not introduce the request as an EQT, thus, increasing
the chances of accepting the next ASAP request as EQT.

Let usillustrate with an example how an incoming request ry is transformed into
the periodic task 7. The request ry represents a two hour long video with a band-
width of 6Mbps.

Table 7.1 shows the relevant characteristics of the jukebox and the parameters of
the scheduling problem. We compute the period of the task 7y as:

808.2MB

B
Ty = |—]Q = 180s = 5 - 1805 = 900
<= l5a! = Lo 7amBps180s’ 2% 5= IS

Figure 7.1 shows the candidate starting times for r¢. The candidate starting times,
shownassty, ..., stf, aretried in that order. Figure 7.2 shows the task 7, when using

152 Chapter 7. Alternative Schedulers

Problem Parameter | Value

Type RSM Double-layered DV D-ROM
Drive technology CAV

m 4

[HAIE N 45s

Q 180s

Stransfer [5.11,12.2] MBps

teess 0.31s

B 808.2MB

Table 7.1: Jukebox specification and problem parameters of the example for JEQS.

st} and st?. In both cases the drive to use is Ds. 7 is an early quantum task and as
such it requires that the drive executes 7y ; in the first cycle to meet the deadline of
the first instance. When using stﬁ the drive can execute 7y ; in any of the first five
cycles.

For each candidate starting time st‘k the scheduler executes the feasibility anal-
ysis for the set I U 7, where 7, is the task built by using st, and T is the task
set of the drive corresponding to st‘k. If the feasibility analysis succeeds, then 7Jk is
incorporated to I;.

The first step of the feasibility analysis on the set I; is to determine if there is
enough bandwidth available on drive i to schedule all the tasks. We do this using
the feasibility analysis for EDF as defined by Liu and Layland [68]. The task set T
Is schedulableif:

n .

CJ
U:Zf_sl (7.2)

j=0

If there is enough bandwidth to schedule all the tasks and the release time of thefirst
request is before ty, the scheduler checksif it can use an EQT. The condition to use
an EQT isthat enough time has passed since an EQT was used last. The scheduler,
thus, keeps arecord of when an EQT was last incorporated in each drive. If the last
instance has occurred at least fﬁ] time units earlier, then the new request can be
accepted as an EQT. U' isthe utilization of drivei at the beginning of the next cycle
of drivei, without considering the bandwidth requirements of 7.

EQT Admission Test Given a quantum task set I with utilization U, a new
task 7y, t, the time at which the new cycle begins and t, the last time a task was

7.1 Jukebox Early Quantum Scheduler 153

Dy oy 4y ey
i st,2 st, 6
T S R
i st2 st’
Dy 4 v
i st st,8
D4 i | + | ! | ll |

Figure 7.1: Candidate starting times for the Request in the example for JEQS.

incorporated in I" as an early quantum task, 7, may be incorporated in I" as an early
guantum task if:

1 1
TkZ[_l—U-l A tn2t|+r1_u
The first condition is needed to guarantee that the task can be incorporated into the
set as anormal quantum task. It derives from the fact that the set is scheduled with
QEDF. The second condition guarantees that enough time has passed to accept the
task 7y as an early quantum task. For a complete proof see [51].

1

Mo i st !
|
. | !
Tk : | : : : | i : : : : .
|
t0
i Ie st
|
|
5 1 !
Ty : : : : : = : : : : . :
t0

Figure 7.2: Details of the resulting tasks in the example for JEQS when using the first and
fifth candidate starting time. Top: Resulting task 7i when using sti. Bottom: Resulting task
7p when using st?.

154 Chapter 7. Alternative Schedulers

Variations of the Scheduling Algorithm

There is a trade-off between optimizing the response time and the confirmation
time. The scheduler may accept a request as a normal quantum task in order to
provide a fast confirmation time at the cost of a worse response time, or delay the
confirmation of the request until it can incorporate it to the schedule asan EQT. The
response time of a request accepted as normal quantum task will never be better
than waiting to schedule the request until it can be accepted as an EQT.

A task 7 can only be scheduled in drive D; if the utilization needed by the request
issmaller or equal to the remaining utilization available on the drive (Ty > [1_—1Ui]).
Therefore, if the request is accepted as a normal quantum task, the starting time of
the request isat least sty > to+[57 1. Asto > t;, the minimum possible starting time
iswaiting until it can be accepted as EQT. Additionally, the utilization of the drive
may decrease if one of the active tasks leaves the system, in which case waiting
to schedule the request may be even more profitable. Therefore, if increasing the
confirmation time is not a problem, the scheduler may only try to schedule ASAP
requests as EQTSs. If the request cannot be incorporated as an EQT, it is placed in
the queue of requests awaiting scheduling until a drive can accept the request as
EQT.

However, when the load of the system increases and requests arrive with ashorter
inter-arrival time than the time until an EQT task can be incorporated into the sys-
tem, the performance of the scheduler that only incorporates tasks as EQT quickly
degrades. Thereason for thisisthat the queue of requests awaiting scheduling grows
very fast, because whenever a request is scheduled the time to wait until the next
request can be accepted as EQT is set further into the future. Thus, waiting to ac-
cept al requests as EQT isonly profitable if the length of the queueis 1 on average
and thisis only possible when the system load is low. Incorporating some requests
as normal quantum tasks aleviates the pressure on the scheduler. In a sense the
requests that are ‘unlucky’ to arrive at a time when the scheduler cannot accept a
request as EQT, pay the cost of an overall better scheduler performance by being
incorporated as normal quantum tasks.

In Chapter 9 we compare the performance of both approaches and show the point
at which using normal quantum tasks is more beneficial than using only EQTs.

7.1.2 Dispatcher

At the beginning of acyclefor drivei the dispatcher decides what must be executed
during that cycle. The dispatcher uses the EDF rule to choose the task with the ear-
liest deadline among the tasks with an instance awaiting execution. A task 7j hasan
instance awaiting execution if the release time of the task is earlier than the present

7.1 Jukebox Early Quantum Scheduler 155

time (r; < tp). If thereis no task with an instance awaiting execution, then according
to the EDF rule, the next cycle of the drive would be idle. However, the dispatcher
uses the cycle to fill up the buffer. In this way, the dispatcher dispatches some in-
stances early to be able to remove tasks from the scheduler as soon as possible and,
so, make bandwidth available for new tasks.

The dispatcher uses the following rule to decide what buffer tofill. It first triesto
go on reading data of the same task that was active in the drive, unless all the data
of the task has been buffered already. If al the data corresponding to the task active
in the drive has been read, but there is another task for the same RSM, it reads the
data of this other task. If the drive can go on reading data from the same RSM, the
RSM loaded in the drive does not need to be unloaded, and the next Q units of time
can be fully utilized for reading data. If no data can be read from the RSM, it loads
the RSM of another task. Only if no task has pending instances, the driveisleftidie.

The dispatcher does not alter the functioning of the QEDF schedule. It only uses
idle cycles when it has decided that those cycles should go unused otherwise.

The dispatcher also deals efficiently with situations in which a task has got a
period of 1. The RSM is kept in the drive constantly until al the data has been
read and only then is unloaded. In such a case, the improvement in the bandwidth
utilization of the drive is considerable compared to the original schedule.

The dispatcher does not know in advance the exact number of instances that need
to be used for each task, because with idle dots it can advance in the execution
of atask. Once the deadline of the last instance of the task is reached, the task is
removed from the schedule.

7.1.3 Example

We illustrate with an example how the scheduler works. We use the jukebox speci-
fication shown in Table 7.1. Table 7.2 shows the requests that arrived at the system
since time 0. All the requests are ASAP and the data of each request is stored on
different RSM (Y i,j | m # m). The table shows the period of the corresponding
task. We assume that before these requests arrived, the system was idle.

Table 7.3 shows the starting time (st;) and response time (rt;) of each task. The
response time is the starting time minus the arrival time. The table also shows for
each drive: the utilization (U'), the starting time of the next cycle(t'), and the earliest
possible time to accept an early quantum task (t: + fﬁ])- The last two columns of
the table show the maximum number of instances needed to read all the data of the
request (RI;) and the latest time by which all the data of the request will be cached
(di*). The exact time is the deadline of the last instance d/®, which is computed
asd®™ = (RI; - 1) T;Q + st;. The table provides an upper bound for both values,

156 Chapter 7. Alternative Schedulers

Arrival | ID | Offset | Size | Bandwidth || Period
(seconds) (MB) | (MB) (Mbps) (quanta)
24| 1 2 | 5000 5 7
108 | 2| 1500 | 3000 6 5
112 | 3 500 | 3272 9 3
137 | 4 2| 8192 10 3
238 | 5| 2000 | 657 18 19
300 | 6| 4000 | 182 12 29
423 | 7 2| 7200 5 7
460 | 8 100 | 1300 24 14
520 | 9 500 | 2500 3 1
546 | 10 750 | 3000 10 3
681 | 11 600 | 4000 3.8 9
865 | 12 10 | 8000 10 3
966 | 13 | 5000 | 100 0.125 287
1098 | 14 2 | 8000 15 2
1181 | 15 10 | 7000 15 2
1456 | 16 300 | 7200 10 3

Table 7.2: Requests that arrived at the system in the example for JEQS.

because the dispatcher does not know in advance the exact number of instances that
need to be used for each task.

At time 24 when r, arrives at the scheduler, the next drive to begin its cycle is
D, so 1; isassigned to D, and it can start immediately. All tasks except 79 can be
incorporated as EQTs. Note that if 7,6 would have arrived earlier, it would have
been rejected, because there was not enough bandwidth in any drive until time 1440
when 73 |eft the system. Therefore, 716 would not be schedulable without using the
early dispatcher.

Figure 7.3 shows the first part of the schedule. The top line indicates the arrival
time of the requests. The up arrows in the schedule indicate when an EQT begins.
The blocks without tags represent work that has been dispatched early.

7.2 Optimal Scheduler

The objective of the optimal scheduler isto serve asaquality reference for Promote-
IT. Given that Promote-IT uses a heuristic scheduler we want to determine the aver-
age difference between the response time achieved with Promote-I T and the optimal
response time.

7.2 Optimal Scheduler 157

Time | ID D; D, D3 Dy stj rti Drive | EQT? | RI; di'aSl

0 0 0 0
24 1| 180 45 90 135 225 201 D2 YES <5 | <5265
180 45 90 135
0 0.14 0 0
108 2 | 180 225 270 135 315 207 D4 YES <3 | <2115
180 405 90 135
0 0.14 0 0.2
112 3| 180 225 270 135 360 248 Dy YES <3 | <1440
180 405 90 495
0.33 0.14 0 0.2
137 4 | 180 225 270 315 450 313 D3 YES <7 | <369
360 405 90 495
0.33 0.14 0.33 0.2
238 5 | 360 405 270 315 540 302 Dy YES 1 540

360 405 630 495

0.38 0.14 0.33 0.2
300 6 | 360 405 450 315 585 285 D2 YES 1 585
720 405 630 495

0.38 0.17 0.33 0.2
423 7 | 360 585 450 495 675 252 Da YES <6 | <6975
720 765 630 495

0.38 0.17 0.33 0.34
460 8 | 540 585 630 495 810 350 D3 YES 2 3330
720 765 630 855

0.38 0.17 0.40 0.34
520 9 | 540 585 630 675 2520 | 2000 Dy NO <3 | <6480
720 765 990 855

0.42 0.17 0.40 0.34
546 | 10 | 720 585 630 675 900 354 D, YES | <3 | <1980
720 765 990 855

0.75 0.14 0.40 0.34
681 | 11 | 720 765 810 855 945 264 D> YES <4 | <5805
1620 765 990 855

0.75 0.25 0.40 0.34
865 | 12 | 900 945 990 855 1035 170 D4 YES <7 | <4275
1620 1125 990 855

0.75 0.25 0.40 0.73
966 | 13 | 1080 1125 990 1035 1170 204 D3 YES 1 1170
1620 1125 990 1575

0.75 0.25 0.40 0.73
1098 | 14 | 1260 1125 1170 1215 1305 207 D> YES <7 | <3465
1620 1125 1350 1575

0.75 0.75 0.40 0.73
1181 | 15 | 1260 1305 1350 1215 1350 169 D3 YES <6 | <3150
1620 2025 1350 1575

0.42 0.75 0.90 0.73
1456 | 16 | 1620 1485 1530 1575 1800 344 Dy YES <6 | <4500
1080 2025 3330 1575

Table 7.3: State of the scheduler at the arrival times and resulting starting time and response
time of the example for JEQS. The values shown for each drive are the utilization U', the
starting time of the next cycle t}, and the earliest time at which an EQT can be accepted.

158 Chapter 7. Alternative Schedulers

1 Tola Ts e Trlg fofio T Ti2fis Tia as 16

A
D, | T30 T31 | Ta00 | T101 | T32 | Top w
!
A A

Figure 7.3: Resulting schedule of the example for JEQS. The blocks without text are idle
slots used for filling the buffers early. The top line indicates the arrival times of the requests.
The up arrows indicate when an EQT begins.

The optimality criterion for the scheduler is to find the minimum response time
for each incoming request. The requests arrive at the scheduler on-line and the
scheduler must provide a confirmation to each request. When a request arrives the
scheduler builds an optimal schedule for the set 24" of request units that need to be
scheduled. The schedules are only locally optimal, because the scheduler is non-
clairvoyant (i.e., it does not know what requests will arrive in the future).

We have made some simplifications to the original scheduling problem to reduce
the already extremely high complexity. On the one hand, we assumethat all requests
are ASAP requests. Therefore, we can use the response time as a minimization
parameter to prune the tree of possible schedules. On the other hand, we assume
that the jukebox has one shared robot and m identical drives, and that the access
time is constant. By using constant access times, computing the medium schedule
becomes trivial, because we do not need to optimize the order in which the data
must be read from an RSM. Using constant access time also allows us to compute
in advance the time needed to read the data of ajob, without taking into account the
previous job that was incorporated to the schedule.

Because the scheduler is optimal it always finds a feasible schedule for an incom-
ing request. However, it may take arbitrary long (weeks) to find a feasible schedule.
Therefore, the scheduler does not take into account the passing of time while build-
ing a schedule. It behaves as if the requests should be scheduled instantly. Thisis
needed, because if the passing of time should be taken into account the computa-

7.2 Optimal Scheduler 159

tions should be invalid by the time they are finished. Thus, the only goal of this
scheduler is to build optimal schedules. It is not concerned about minimizing the
computing time, and the confirmation time is always 0, because time does not pass.

The scheduler is based on the optimal model presented in Section 5.8. For effi-
ciency reasons the optimal scheduler does not determine the set of jobs to schedule
in advance, but prunes the possible set of jobs as the computation advances.

There is an important difference between the method to schedule a request used
by the optimal scheduler and the method presented in Section 3.5, which is used by
the non-optimal schedulers. In the latter, we first guess a candidate starting time for
arequest and then try to build a schedule that includes the request using that time.
In the optimal scheduler, determining the candidate starting time and building the
schedule are coupled. The optimal scheduler uses the starting time as the branch-
and-bound variable to find an optimal schedule.

The optimality criterion for the optimal scheduler isto find the minimum st that
permits to build a feasible schedule for the set of jobs J representing the request
unitsin U’. Contrary to heuristic schedulers, the optimal scheduler always succeeds
in finding a feasible schedule for all the candidate starting times that are greater or
equal to the optimal starting time sty. However, the time needed to compute the
schedule is prohibitive, because the algorithm used has exponential complexity.

The scheduler incorporates the new request ry into U’ without first determining
the starting time of the request unitsin ry. The deadlines of the new request unitsis
stk + Adk, Where sty is avalue that has yet to be determined.

The optimal scheduler uses constraint logic programming (CLP) [110]. CLP
profits from having a minimization factor in the optimality criterion. The schedul er
isimplemented in Eclipse [114].

The optimal scheduler builds a schedule for each drive. The jobs are incorporated
to the drive schedules as early as possible. When the scheduler adds job J; to drive
schedule D, it determines the starting and finishing time of the load and read tasks.
The read starts immediately after the load finishes. The time to start the unload is
not set until the next job is added to D;. If the next job is on the same RSM, then
the unload task is not used. Otherwise the scheduler first schedules the unload of
the previous job added to D; for the earliest possible time and then adds the new
job to D;. Not scheduling the unload until it is really needed has three advantages.
First, the scheduler is flexible about keeping an RSM loaded in a drive. Second,
the chances to be able to start loading another drive as early as possible increase,
because the scheduler does the unloads as late as possible. Third, the scheduler does
not create unnecessary holesin the robot schedule.

The scheduler explores the whole tree of feasible schedules. It carries out the
exploration by using a branch-and-bound algorithm whose ‘ bind-criterion’ is the

160 Chapter 7. Alternative Schedulers

minimization of the starting time of the new request, stx. The scheduleisbuilt in an
incremental way using the following algorithm:

1. Choose ajob J; of the set of jobs J” that still need to be incorporated into the
schedule.

2. Choose adrive D; to use for J;.
3. Determinethe set of jobs § in J” corresponding to the same RSM as J;.
4. Choose non-deterministically asubset Sy C S.

5. Build an optimal medium schedule for Sx U J;. The optimal medium sched-
ule is obtained by ordering the jobs by increasing deadline of the read task,
because the access time is constant.

6. Schedule the unload and load tasks if needed. If the RSM was loaded in the
drive, no unload and load tasks are used and the starting time of the read of
the first job in the medium schedule is the maximum between ty, the time at
which the schedule is being computed, and the time at which the read task
from the last job in the schedule will finish.

There are two conditions for which the algorithm for building a schedule stops and
backtracks. The first one is that the read task of the job being incorporated to the
schedule cannot meet its deadline. The second condition is that incorporating a job
to the schedul e should make the starting time sty receive abigger value than the best
starting time obtained so far for afeasible schedule.

Although all the task and drive combinations may be tried, the scheduler begins
by trying the combinations that have better chances of obtaining alow upper-bound
for the starting time sty. The tasks are initially ordered by increasing deadline. As
the request units corresponding to the new request r, do not have deadlines yet,
the value used for sorting these jobs is the arrival time ty plus the relative deadline
of the request unit. The scheduler first tries to schedule all the jobs on the same
RSM together, because this makes the best use of the jukebox resources and, thus,
is expected to provide the best starting time. Therefore, the first subset of jobs on
the same RSM to try for each job J; isthe full set Sy = S.

There are two different strategies for choosing the drives. One strategy chooses
first the drive that will become available earlier, while the second strategy analyzes
the drives by index order (D4, Dy, ..., Dy). Both strategies alow building optimal
schedules, although the schedules built may be different. As the optimality is mea-
sured on alocal basis, every time arequest arrives at the system, using one or the

7.2 Optimal Scheduler 161

other strategy may lead to an overall different performance. The reason for the po-
tential difference in performanceis that the two strategies build different schedules,
thus, when a new request arrives the state of the system is different according to
the strategy used. The state of the system, in turn, determines what the minimum
starting time of the new request is.

The scheduler guarantees that two jobs on the same RSM are not assigned to
different resources in the same period of time, by using a build-and-test approach.
After assigning a set of jobs J; U Sy to drive D;, the scheduler checks that there are
no conflict with the other jobs in the schedule. If there are conflicts it considers the
combination of the set of jobs J;uSy and drive D; invalid and discardsit. However, it
could be possibleto assign J;uSy to D; at aslightly later time, once the other jobson
the same RSM have finished executing. The choice of discarding the combination
is a small sub-optimization which does not seem to change the optimality of the
solution.

In Chapter 9 we compare the performance of Promote-IT with that of the opti-
mal scheduler. Unfortunately, because of the exponential complexity of the optimal
scheduler, we could only obtain results for ssmple request sets, where each request
has only few request units.

7.3 Extensions to Existing Jukebox Schedulers

We present now the extensions to existing jukebox schedul ers that we madein order
to compare them with Promote-1T. We discuss briefly the algorithms used—in the
extent that they differ from the algorithms originally proposed—and the implemen-
tation. The implementation of the three schedulers is based on the implementation
of Promote-IT.

7.3.1 Extended Aggressive Strategy

The extended aggressive strategy is based on the extended switch-read model pre-
sented in Section 5.4.2. It is an extension of Lau’s aggressive strategy that allows
us to deal with non-identical drives, variable load and unload times, and multiple
robots.

Aswediscussed in Sections 2.2.1, Lau et al. try assigning ajob only to one drive.
If that fails, then the job cannot be assigned and the algorithm failsfor the attempted
starting time. This approach is correct for identical drives and constant switching
times. In the presence of non-identical drives and variable switching times, this
approach is too limited. The extended aggressive strategy uses the tree pruning of
Promote-IT to assign resources to the jobs (see Section 6.5.1).

162 Chapter 7. Alternative Schedulers

Lau et a. do not specify in their articles what to do when data corresponding to a
new request must be read from an RSM that is already loaded in adrive. We assume
that because the RSM are |eft |oaded in the drives until the drives are needed again,
the algorithm first reads the data from the loaded RSM before unloading them.

We use the implementation of Promote-IT as a basis for implementing the ex-
tended aggressive strategy. The implementation optimizations of Promote-IT pre-
sented in Section 6.9 also hold for the extended aggressive strategy.

7.3.2 Extended Conservative Strategy

The extended conservative strategy is based on the minimum switching model as
shown in Figure 5.1 on page 84. Thus, it models the unload and load operations
separately. As we discussed in Section 2.2.1, the only way to keep the unload and
load operations together in the conservative strategy is to use worst-case unload
times or to assume constant switching times.

The extended conservative strategy usesthe LDL strategy of Promote-1T, which
can build correct Back-to-Front schedules without using the worst-case time.

In Section 9.4 we show that decoupling the load and unload improves the perfor-
mance of the scheduler. Therefore, decoupling the load and unload in the extended
conservative strategy provides a better performance than using a single switch op-
eration and computing with the worst-case switching time.

The implementation of the extended conservative strategy is the same as the im-
plementation of Promote-IT with the exception that it does not use the early dis-
patcher. Therefore, each task is dispatched at precisely the time that the scheduler
indicates.

7.3.3 Fully-Staged-Before-Starting

To implement the FSBS scheduler we use the earliest starting time first (ESTF)
scheduling policy of Promote-IT and restrict the requests to having all request units
with the same delta deadline (Y1, : Aaij = 0). Therefore, the user will only be
able to start consuming the data once the data of all request units has been staged.
If the request consists of request units on multiple RSM, the scheduler will try to
use multiple drivesto read the datain paralel. If there are multiple requests for the
same RSM, the scheduler will try to read all the requested data from the RSM at
once. Thus, our implementation meets the goals proposed by Federighi et al. [29]
and the other work proposing full staging before starting discussed in Section 2.2.2.
Additionally, our version of FSBS provides a confirmation ASAP and guarantees
that the starting time confirmed to the user is respected.

7.3 Extensionsto Existing Jukebox Schedulers 163

7.4 Summary

This chapter presented the five schedulers we use to evaluate the performance of
Promote-1T. The jukebox early quantum scheduler (JEQS) and the optimal sched-
uler are new schedulers we propose in this dissertation, while the extended aggres-
sive strategy, the extended conservative strategy and Fully-Staged-Before-Sarting
are extensions of existing schedulers.

JEQS isaperiodic scheduler that uses the robot in acyclic way. It isbased on the
use of early quantumtasks (EQTS). The goal of JEQS isto incorporate the requests
into the schedule so that they can start in the next cycle of a drive as EQTs. Al-
though, JEQS can incorporate requests in the schedule early, in Chapter 9 we show
that it performs much worse than Promote-IT. This bad performance is intrinsic to
any periodic jukebox scheduler.

The optimal scheduler computes an optimal schedule for each incoming request.
This scheduler finds the minimum response time for each request. As we have
shown in Chapter 5 the problem is NP-hard, therefore, the optimal scheduler can-
not compute the schedules in polynomial time. The computational complexity of
the scheduler increases rapidly with the complexity of the requests and the system
load. In Chapter 9 we show that this scheduler can only be used for small test sets
and can only cope with low system loads. Therefore, we use this scheduler only as
a performance parameter for the other schedulers.

164 Chapter 7. Alternative Schedulers

Chapter 8

Implementation and Simulation
Environment

To support the implementation and evaluation of jukebox schedulers, both in real
and simulated environments, we developed a toolbox called JukeTools, which we
describe in this chapter.

8.1 JukeTools

JukeTools is a toolbox that provides an environment for implementing and evalu-
ating jukebox schedulers. The schedulers can be tested in numerous real and sim-
ulated environments. They can be tested with different types of requests, caching
policies and hardware. The verification functionality of the toolbox checks the va-
lidity of the schedules and helps the developer to detect errors. JukeTools is espe-
cialy useful to detect resource-contention problems. Analyzer tools create detailed
reports on the behaviour and performance of a scheduler, and provide comparisons
between schedulers.

Thetoolbox supports simulated and real usersto use simulated and real hardware.
It hides the difference between ‘simulated’ and ‘real’ from the HMA components.
Therefore, the developer can use the same code for the simulations and the oper-
ational system. In this way, the HMA components can be thoroughly tested in a
controlled environment before using them in operational systems. Bosch et a. used
asimilar approach to develop afile system for secondary storage [15]. They argue
that using the same code for real and simulated helps to: (1) be more confident
that simulated off-line performance numbers show real and representative on-line
performance numbers, (2) detect performance bottlenecks of the algorithms eas-
ily, (3) analyze new algorithms off-line before they are integrated into a production
system, (4) be more confident that no side effects are introduced when a ssmulated
algorithm is moved into areal system, (5) construct a reference system into which

165

Time .
. . GUI/ Sim.
Simulation Logger > Log GUI
Engine Controller LS
''''''''''''''''''''''''''''''''' il Web pages
ACt|V|ty Wa.tChdog Analyzer .
Real Tools Graphics
User Statistics
it Jukebox Performance
User Simulator comparison
Simulator 1
i HW Model
.i.
| |
times contents contents charact.
&
Generator Tools ‘Specs Mea_srléroelrsnent

Figure 8.1: Architecture of JukeTools.

other algorithms can be easily integrated and compared, and (6) easily migrate al-
gorithms form off-line simulators into real systems.

Figure 8.1 gives an overview of the toolbox. In the following sections we discuss
the different components of the toolbox. The jukebox scheduler, which is part of
the HMA, is at the core of JukeTools. The main goal of JukeTools is to provide a
flexible environment to develop and evaluate jukebox schedulers. We classify the
functionality provided by JukeTools into:

Time simulation. The toolbox component involved is the time simulation engine.
The time ssimulation engine provides the time to all the components that run
simultaneously with the HMA (i.e., the components shown in Figure 8.1 shar-
ing the same outer box as the time simulation engine).

Output control and analysis. The toolbox components involved are the GUI and
simulator controller, the logger, and the analyzer tools. Like the time ssmu-
lation, this functionality is available to all active components.

Interface to hardware. The toolbox componentsinvolved are the jukebox simula-
tor, the hardware model, and the measurement tools.

166 Chapter 8. Implementation and Smulation Environment

Framework for pluggable jukebox scheduler. The toolbox componentsinvolved
are the components of the HM A—specially the jukebox controller—and the
activity watchdog.

Workload & content generation. The toolbox components involved are the gen-
erator tools, and the user simulator.

The toolbox isimplemented in Java, except for some functionality which is operat-
ing system dependent. The drive controllers use the Java Native Interface (JNI) to
call Cfunctionson Linux in order to open and close the drives and get drive specific
information. Additionally, the analyzer tools use gnuplot to generate the graphics.

Although the operating system and the programming language do not provide
real-time guarantees, the timeliness of the system is enough for the time require-
ments of scheduling a jukebox. In cases where strong real-time guarantees are re-
quired the implementation can be ported to real-time Java [90]. In [66] we present
an early implementation of the jukebox scheduler that works under the real-time
operating-system Nemesis [92].

Using JukeTools we have implemented and compared Promote-IT, JEQS, the
extended aggressive, the extended conservative strategy and Fully-Staged-Before-
Starting (FSBS). The off-line optimal scheduler presented in the previous chapter
uses some of the tools provided by JukeTools, but runs outside the framework of
JukeTools.

8.2 Time Simulation

The time simulation engine is an event simulator with the capacity to eliminate
waiting time from the simulation. Waiting times in a simulation are the periods
where areal system would wait for hardware operations or new user requests, and
the system is not busy performing computations. The engine reduces the execution
time of a simulation considerably. We have executed simulations corresponding to
24 hours of system use in 15 minutes.

The engine managesthe virtual time of the system, deliverstimed wake-up events
and provides thread synchronization through semaphores. Threads register them-
selves with the engine at creation time. By tracking the state of the threads through
the use of the semaphores the engine can detect and eliminate waiting times.

A thread can be in one of three states. active, blocked or sleeping. An active
thread performs computations and needs to run in real time. A blocked thread is
waiting for an event from an active thread, e.g., waiting on a semaphore. A sleeping

8.2 Time Smulation 167

thread is waiting for its wake-up event, e.g., to simulate waiting for the robot to
finish moving.

As long as at least one thread is active, the virtual time advances in real time.
When all threads are blocked or sleeping, the time simulation engine advances the
virtual time to the time of the next event.

The time ssmulation engine is not a thread scheduler—thread scheduling is per-
formed by the Java Virtual Machine (JVM)[67]. The engine runs in a thread with
the highest priority so that it always gets the right to execute when ready. Bosch
et a. [15] userea and virtual time in asimilar manner.

8.3 Interface to Hardware

JukeTools providesauniform interface to the jukebox hardware through the jukebox
simulator. Figure 8.2 shows that the difference between using real and simulated
hardware is transparent to the scheduler and the dispatcher. The jukebox simulator
uses the time simulation engine to simulate the execution of the operations.

Thejukebox simulator usesthe hardware model presented in Chapter 4. The hard-
ware model isstrongly data-driven. It isbuilt using the specifications provided in the
hardware-characteristicsfile. The information of the file may correspond to vendor
specifications, the output of the measurement tools or the imagination of the toolbox
user. We developed several measurements tools to measure the performance of our
jukebox and CD-ROM drives.

A goal of the jukebox simulator is to provide the same execution pattern during
each execution of a simulation, so that the results are reproducible: if we run a
simulation with the same input we want to obtain the same performance results.
Therefore, the jukebox simulator assumes that the execution of the operations take
exactly the time indicated by the model.

The simulator uses the ‘simulation model’ proposed by Ruemmler et a. [94]
when relevant. The drive simulator, for example, keepstrack of the last time that the
drive performed aread to decideif aspin-up is needed. However, we do not consider
it relevant to know the exact rotation time in an access to data on a disk, because
it is very small compared to the other components of the access. Additionally, the
exact rotation time varies if atask is dispatched with a small time difference (e.g.,
one millisecond), therefore, the resulting execution will not be the same.

We performed many comparisons between using real and simulated hardware
using our smartDAX jukebox. We concluded that the performance of the HMA is
not affected in an important way by the type of hardware used (rea or simulated).
When using real hardware an early dispatcher has more opportunities of dispatching

168 Chapter 8. Implementation and Smulation Environment

tasks earlier. However, in most cases, the difference in timeis so small, that it does
not affect the overall system performance.

At present the implementation of the hardware model can handle any type of
optical and magneto-optical jukebox. We are mainly concerned with this type of
jukebox technology, because disks are better suited for random access than tapes,
and can be loaded and unloaded faster. The implementation can easily be extended
toinclude other type of storage media, drives and jukebox hardware. A good starting
point to include magnetic tapes is to implement the model to estimate the locate-
time on serpentine tapes provided by Hillyer et al. [44] and the benchmark method-
ology presented by Johnson et al. [53].

8.4 Output Control and Analysis

JukeTools provides different ways to evaluate and monitor the operation of the sys-
tem. The logger provides a log service to all the components in the toolbox. The
log is a set of XML-files[113]. We use XML, because it permits to have logs that
are human readable and at the same time can be easily processed automatically
by analyzer tools—using XSLT [112] or XML-parsers. Another advantage of us-
ing XML is that each component of the toolbox can generate specific log entries
without affecting existing analyzers, because unknown entries are ignored.

The toolbox user can easily indicate what type of messages should be stored in
the log and the logger filters out all the messages that do not correspond to that
specification. Thus, it is easy to control the size of the log files.

The toolbox components can request specific log files and indicate to which log
file each log entry must be written. The logger adds timestamps to every log entry
and writes the entries in the log when the other jukebox components are idle.

The log is processed by analyzer tools to produce reports in the form of web
pages, graphics, statistics and performance comparisons. Other analyzers combine
the statistical data of multiple runs to compare the performance of schedulers under
different load conditions. The graphics shown in the next chapter and in Section 6.10
were generated by the analyzer tools.

More complex analyzers provide graphical representations of the schedules cre-
ated during the execution of the system and details about the utilization of the juke-
box resources.

The log and the analyzer tools are also very useful to implement and debug a
jukebox scheduler. The jukebox controller and multiple activity watchdogs report
incorrect behaviour of the jukebox scheduler components.

8.4 Output Control and Analysis 169

) read
Dispatcher
load
unload
A
DAX-Robot open
Controller close
command
Y A | _command Optical-Drive ||
— Controller
_amm | _command Optical-Drive |, |
— Controller
| _command Optical-Drive |, |
y— A Controller
s . | command Optical-Drive
=—1 Controller
(a) Digpatching tasksto a smartDAX 700 jukebox.
. read
Dispatcher
load
unload
A,
Simulated-Robot open
Controller close
command
Simulated
Robot Simulated |, | command | Simulated-Drive |, |
Drvie Controller
- Simulated command | Simulated-Drive
< le—|
Time wake-up Drvie Controller
Simulation +eguest
. Simulated command | Simulated-Drive
< le—]|
Engme Drvie Controller
Simulated |_| command | Simulated-Drive ||
Drvie | Controller

(b) Dispatching tasks to a simulated jukebox.

Figure 8.2: Dispatching tasks to real and simulated jukeboxes.

170 Chapter 8. Implementation and Smulation Environment

Apart from the logger, the GUI offers different views of the running system and
an attached simulation controller allows the user to pause, resume and stop the sim-
ulation. New views can be easily added to the GUI.

8.5 Framework for Pluggable Jukebox
Scheduler

The implementation of the HMA is highly modular and the interfaces between the
components are small and simple. This makes plugging in different jukebox sched-
ulers and combining different schedul e builders and dispatchers easy. The schedule
builder, the dispatcher and the jukebox controller run as independent threads.

The jukebox controller operates as a schedule verifier, because it only performs
valid commands. It determines if a command is valid using information about the
location of each RSM in the jukebox and the state of each device (see Section 4.3).
This information cannot be modified directly by the scheduler. The state of the
devices only changes as a result of executing commands, which are handled by the
dispatcher.

The jukebox controller can detect illegal commands that request to: unload an
empty drive, load a loaded drive, read data from an empty drive, unload an RSM
different from the one loaded or load the same RSM in two different drives. The
controller also reports if the commands are being executed late or if the execution
time is different from the time that was estimated by the scheduler. The latter is
especialy important when using real hardware.

Different components observe the execution of the HMA using the publisher-
subscriber pattern [31]. The activity watchdog uses the events generated by the
HMA to detect possible deadlocks in the use of shared resources. The watchdog can
detect deadlocksin the HMA components, if the components publish the beginning
and end of an operation that may lead to a deadlock, and indicate the maximum
time to perform the operation.

8.6 Workload and Content Generation

The requests for the HMA originate either from real users outside the toolbox or
from the user simulator. The user simulator generates the workload for the HMA
based on datafrom arequestsfile and an arrival-timesfile. Thesefiles are created by
the generator tools. The generator tools also create synthetic jukebox contents and
cache contents. The toolbox works with real jukebox and cache contents as well.

8.5 Framework for Pluggable Jukebox Scheduler 171

The generator tools store the datain XML-files, which can be used for multiple
simulations. The parameters specified by the toolbox user are also defined in XML.

8.6.1 Jukebox-Contents Generator

The toolbox user can specify which type of contents should be generated. We have
defined four basic types—long videos, short videos, music and discrete data—for
which the user may further define parameters to determine bandwidth, duration and
size. The user also defines the proportion of the four types in the jukebox. The
contents are generated using a uniform distribution based on the parameters given
by the users. The contents are generated independently of the type of RSM in which
they are stored. So we can perform simulations using the same jukebox contents
with different jukeboxes and RSM types.

The contents are organized in albums and files. In the case of along video, an
album is the video and the files are the parts in which the video must be chopped to
fit in the RSM when the capacity of an RSM is less than the length of a video. For
the other content types, an album is simply a directory.

Examples of long videos are movies, documentaries and sport competitions. The
idea of a short video is to represent cartoons, commercials, video-clips and short
news items. The short videos are grouped together into albums by affinity, e.g.,
multiple cartoons of Bugs-Bunny.

The contents of the jukebox are assigned a popularity value at the time of cre-
ation. The popularity distribution is a parameterized Zipf distribution [117]. Zipf
distributions have been detected for most data access systems (see Section 3.4).
By parameterizing a Zipf distribution [85] we can generate different types of dis-
tributions, including the uniform distribution. The files and albums are assigned
independent popularity values, except for the case of long videos. Assigning inde-
pendent popularity valuesto the files and the albums seemsto fit correctly the world
of (pop-)music where albums may have just one popular song that is in the charts
and requested very often, while the rest of the songs are hardly ever heard. People
also listen to full albums, because they like all the music on the album, even though
the album may not have any song in the charts.

The contents are further classified in clusters. Cluster should represent genres,
e.g., soul, disco, etc. Thisinformation is used by the request generator when decid-
ing what data to request together.

8.6.2 Request Generator

We have implemented a request generator that generates requests for the synthetic
jukebox contents described in the previous subsection. The output provided by the

172 Chapter 8. Implementation and Smulation Environment

tool is arequest set containing as many requests as indicated by the toolbox user.
The user specifies which type of data should be requested giving probabilities for
each type of data. The probability determines the proportion of each type of datain
the request set.

All request unitsin arequest generated by thistool are for the same type of data.
The tool assumes that continuous-media (i.e., audio and video) is streamed and the
data is consumed in a sequential way. Therefore, the relative deadline of each re-
guest unit is at the time at which the consumption of the data of the previous request
unit should finish and the relative deadline of the first request unit is O (formulated
in Equation 8.1). Thetool can split thefiles of continuous-mediain multiple request
units to obtain better response times. If the data of the request is discrete, then all
reguest units have the same relative deadline of 0.

Ado = 0 (8.1)
Adgj = Adgj_g + byj1 Scj-1

All the data in arequest belongs to the same cluster. The request generator first se-
lects a cluster randomly using a uniform distribution and then uses the popul arity of
the files and the albums to include data in a request. We have defined the following
basic types of requests:

One file Therequestisonly for onefile. Therefore, the number of RSM is one.

One full album Therequest contains arequest unit for each filein the album in the
order given by the album. In the case of long video, the request units may be
on different RSM, otherwise they will always be on the same RSM.

Multiple full aloums The request contains a request unit for each file in each of
the albums. The request units are ordered per album. They are with a high
probability in different RSM.

Parts of one album The request contains request units corresponding to somefiles
of one album.

Parts of multiple albums The request contains request units corresponding to just
parts of albums. The request units are with a high probability in different
RSM.

8.6.3 Cache-Contents Generator

The cache-contents generator generates synthetic cache contents. The cache con-
tents keep information about the data currently in the cache and map the data to

8.6 Workload and Content Generation 173

Seed 1 Seed 2

6 reg/hour | 18 reg/hour | 60 reg/hour || 6 reg/hour | 18 reg/hour | 60 reg/hour
4.17 1.39 0.41 250 0.83 0.25

18.03 6.01 1.80 14.40 4.80 1.44
18.72 6.24 1.87 15.07 5.02 1.50
22.97 7.65 2.29 35.95 11.98 3.39
39.73 13.24 3.97 36.83 12.27 3.68
53.15 17.71 5.31 36.84 12.28 3.68
70.51 23.50 7.05 57.35 19.11 575

Table 8.1: Example of arrival times generated by the arrival-times generator using two
seeds and three average arrival times.

file-system identifiersin secondary storage. The cache contents are managed by the
cache manager, which is a component of the HMA (see Section 3.4). For the cache
manager there is no difference between synthetic data and real data stored by itself
during the operation of the system. Thisis another point that supports the transpar-
ent use of the HMA in asimulated or rea environment.

The cache-contents generator operates in the following way. It first generates a
request set—using the request generator. It then generates a report indicating the
last time each file (or part of afile was requested) and how often it was requested.
This data can be interpreted as the request arrival history of a previous run. Thetool
can aso generate the cache contents from the log of a previous run.

When using synthetic cache contents, the cache manager decides which data
should be in the cache at the beginning of the simulation. It does so by using ei-
ther the last time the data was requested or the frequency with which the data was
requested, or a combination of both.

8.6.4 Arrival-Times Generator

The arrival-times generator generates the times at which requests arrive at the sys-
tem. The tool can use different known distributions, e.g., Poisson, Uniform, etc.
We generate different load factors by varying the average inter-arrival time and us-
ing the same specific distribution. The tool can aso use as input the request-arrival
times of area system.

To evaluate the performance of a scheduler, we feed the system the same request
set and different inter-arrival rates. Table 8.1 shows the arrival times of the requests
when at an average of 6, 18 and 60 requests per hour. The times are generated using
Poisson and two different initial seeds (Seed 1 and Seed 2).

174 Chapter 8. Implementation and Smulation Environment

8.7 Summary

This chapter presented JukeTools. a toolbox to develop, evaluate and implement
jukebox schedulers. The toolbox allows the developer to concentrate on the top-
ics relevant for scheduling and abstract from secondary issues. JukeTools helps to
detect inconsistencies in the use the jukebox resources and missed deadlines. It
also provides detailed reports on the performance of the scheduler, which can be
used to detect bottlenecks and inefficiencies. The toolbox is very flexible and can
be configured easily to simulate numerous hardware architectures, scheduling poli-
cies and user behaviour. Therefore, it provides an ideal framework to evaluate and
compare different schedulers. JukeTools provides an environment that makes simu-
lation transparent to the developer to the extent that the same code can be used for
simulations and operational systems.

Thetoolbox can also be used to eval uate different hardware architectures, caching
policies and services offered by the storage system. Furthermore, making some
modifications to the semantics of the components and the interfaces, the toolbox
can aso be used to implement real-time schedulers for the production application
presented in Section 2.3.

8.7 ummary 175

176 Chapter 8. Implementation and Smulation Environment

Chapter 9
Performance Evaluation

This chapter evaluates the performance of different jukebox schedulers. Promote-
IT, JEQS, optimal, FSBS, extended aggressive strategy, and extended conservative
strategy. The first three are the new schedulers that we present in this dissertation,
while the others are extensions of existing schedulers.

The extended schedulers have better properties than the original ones, while still
keeping the features of the origina schedulers that we consider most important to
evaluate. The chapter is organized in a way that shows the importance of each of
the characteristic features of Promote-1T. Table 9.1 provides a summary and com-
parison of the features of Promote-IT and of the other jukebox schedulers.

Section 9.1 shows the need to schedule the jukebox in an aperiodic way by com-
paring Promote-IT and FSBS against JEQS. It shows that Promote-IT is clearly
better than JEQS and that many times even FSBS is better than JEQS.

Section 9.2 shows the benefits of using pipelining instead of full staging before
providing access to the user by comparing the performance of Promote-IT against
that of FSBS. The comparison shows that the response time of Promote-1T ismuch
shorter than that of FSBS.

Section 9.3 shows the need to use an early dispatcher, especially when using a
Back-to-Front strategy. It shows that the LDL strategy of Promote-IT is clearly su-
perior to the extended conservative strategy, even if they both use the same schedul-
ing algorithm. It shows also that JEQS and even the Front-to-Back strategies benefit
from early dispatching. As anticipated in Chapter 6, the benefits for Front-to-Back
strategies are small.

Section 9.4 shows the benefits of decoupling the load and unload operation by
comparing Promote-IT against the extended aggressive strategy. The comparison
shows that Promote-IT performs better than the extended aggressive strategy. How-
ever, the difference in performance is much smaller than with the other schedulers.

Section 9.5 shows that the response time of Promote-IT is near to the optimal
response time by comparing Promote-IT against the optimal scheduler. Due to the

177

Extensions New

JEQS

Multiple request units
Unrestricted location data
Continuous data

Discrete data

Multiple drives
Non-identical drives
Multiple robots

Flexible robot functionality
Flexible robot scope

Requests

+|| +|+|+| +| Optima

+|+|+| +|+| +| +| Extended Aggressive

Hardware

Real-time guarantees
Variable load/unload times
Aperiodic scheduling
Pipelining

Decoupled Load/Unload
Early dispatching
Polynomial algorithm

+ |+ | +||+]+|+|+|+]| +]|+|+]|+]| FSBS

+| |+ +| +||+| +| +|+]| +|| +| +| +| +| Extended Conservative

Scheduler

+| 4|+ +|+|+ |||+ +|+|+|+|| +]|+]|+]|+]|Promote-IT
+

+| +| +
1

Table 9.1: Characteristic of the evaluated schedulers.

178 Chapter 9. Performance Evaluation

limitations of the optimal scheduler regarding computational complexity, we could
only verify thisfor small test sets.

Finally, section 9.6 compares all the schedulers and evaluates them regarding
performance and flexibility. It shows that Promote-IT is the overall-best scheduler.
Other schedulers are better than Promote-1T regarding particular performance crite-
ria(e.g., the optimal scheduler provides shorter response times and JEQS has excel-
lent computing times), but they perform very poorly regarding other criteria (e.g.,
the optimal scheduler requires exponential computing time and JEQS provides very
long response times).

Asshown in Table 9.1, not all schedulers can deal with flexible requests and any
type of jukebox hardware. Therefore, in each section we restrict the type of requests
and thejukebox architectureto the limitations of the most restrictive scheduler being
eval uated.

In this chapter we show only a few representative test cases that highlight the
difference between the schedulers being compared. Furthermore, for Promote-IT
we present only the performance of ESTF and LDL and leave out EDF and LSTL.
ESTF and LDL are good representatives of Front-to-Back and Back-to-Front, re-
spectively (see Section 6.10).

9.1 Aperiodic vs. Periodic Scheduling

This section presents a comparison between aperiodic and periodic scheduling.
Aperiodic scheduling is represented by Promote-IT* and FSBS; periodic schedul-
ing is represented by JEQS. For JEQS we consider the two variations proposed in
Section 7.1.1: scheduling normal quantum tasks (shown in the plots as‘ JEQS') and
scheduling only EQTs (shown in the plots as ' JEQS only EQTS)).

We use FSBS in this comparison, because even though FSBS is very smplein
many cases it performs better than JEQS. FSBS has a similar behaviour to a First-
Come-First-Serve scheduler, which virtually means that no serious scheduling is
done. It first serves arequest completely and only then it provides access to the data
of the request.

We show some performance results for simulations with two jukebox architec-
tures: the fast jukebox and the slow jukebox. The architectures differ in the speed of
the drives, fast and slow, respectively. The test setup is described at the end of this
section. Figure 9.1 shows performance results for the fast jukebox and Figure 9.2

1 In this comparison the performance of Promote-IT is representative for the performance of the
extended aggressive strategy and extended conservative strategy, because the difference in perfor-
mance among these schedulers is negligible when compared with the difference among Promote-
IT, FSBS and JEQS.

9.1 Aperiodic vs. Periodic Scheduling 179

700 . , .
— JEQS ;
600 | ~*- JEQSonly EQTs
—— Promote-IT
500 © FSBS
8 a00 | ’
Q .
£ 300 | *
200 v
" X
100 g -xem * a = | i
0 : : r ‘ ‘
60 70 80 90 100 110 120
System |oad (requests/hour)
(@) Mean response time.
00 s ‘ ‘ ¥
| —*- JEQSonly EQTs |
2500 1 __ Promote-1T :
2000 = FSBS *‘, /
T 1500 //
£ g
1000 /
Fa
500 | IO]
E%%#—éﬁ—i‘—é—i—## a |
0 . : ;
60 70 80 90 100 110 120

System load (requests/hour)

(c) Maximum response time for 90% of the re-
quests.

12000 : ‘
—— JEQS
| -x- JEQSonly EQTs o+
10000 — Promopg-_lyT N
| —
g 8000 SBS/
T 6000 |
£
= 4000 t o
2000 + *
e X L
O T L L L L
60 70 80 9 100 110 120

System load (requests/hour)

(e) Maximum response time.

Time (sec)

Percentage

120

—— JEQS’ ‘ ‘ Cox
- JEQSonly EQTs
500 Promote-IT
= FSBS
4 L
00 i
300
200 ¢ %
100
K
60 70 80 90 100 110 120
System load (requests/hour)
(b) Mean confirmation time.
006 —— JEOS
| —*- JEQSonly EQTs §
005 Promote-IT
00| ° FSBS
0.03 | 5 N
0.02 ¢
0.01 ¢
0 H—k KKk —%
60 70 8 9 100 110
System load (requests/hour)
(d) Mean computing time.
75 ; . !
0l — JEQS .
~*- JEQS only EQT:
65 — Promote-IT
60 I @ FSBS
55 r]
50 L b
45
40 L
35
30 ¢
251

80 90 100 110
System load (requests/hour)

70

(f) Mean robot utilization.

Figure 9.1: Aperiodic vs. periodic scheduling for the fast jukebox.

120

180

Chapter 9. Performance Evaluation

800 —— JEQS’ 2(5)8 —— JEQS’ .
700 1 -x- JEQSonly EQTs . ~x- JEQSonly EQTs 7o
600 | —— PromotelT / 400 1 — Promote-IT /
- FSBS 350 - FSBS
g 500 g 300]
‘OET 400 + ‘qET 250 /
£ 300 t = 200 ¢ /
20+ gogomoge @8 igg : ;
100 | PRI 50 X 1
0 ‘ ‘ : : : 0 I T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
System load (requests/hour) System load (requests/hour)
(8) Mean response time. (b) Mean confirmation time.
T T .1 T T
3500 —— JEQS , 0%9 | —— JEQS)
3000 | —*- JEQSonly EQTs A : -~ JEQS only EQTs i
—— Promote-IT / 0.08 1 — Promote-IT 1
2500 & FSBS ¥/ 007 | o FSBS b
—_ ¥ —_ I
€ 1500 | 7 g 0057
= T g 004y
1000 /e] 0.03 }
T 0.02 -
00 e 001 |
0 . ! 0 %
10 20 30 40 50 60 0O 10 20 30 40 50 60
System load (requests/hour) System load (requests/hour)
() Maximum response time for 90% of the re- (d) Mean computing time.
quests.
7000 ——— JEQS' 80— "JEQS ‘ -
6000 | —* JEQSonly EQTs 70 —x- JEQSonly EQT
— Promote-IT 60 Promote-IT
5000 o FSBS e FSBS
8 4000 | g0 |
€ 3000 840
[p 30t]
i
2000 t 20! 1
1000 t 10 t
0 ‘ : : : : 0 : : : : :
10 20 30 40 50 60 0 10 20 30 40 50 60
System load (requests/hour) System load (requests/hour)
(e) Maximum response time. (f) Mean robot utilization.
Figure 9.2: Aperiodic vs. periodic scheduling for the slow jukebox.
9.1 Aperiodic vs. Periodic Scheduling 181

show the corresponding results for the slow jukebox. The plotsin each figure show:
(a) the mean response time, (b) the mean confirmation time, (c) the maximum re-
sponse timefor 90% of the requests, (d) the mean computing time, (e) the maximum
response time, and (f) the mean robot utilization. The average cache-hit rate is 63%.
The cache-hit rate is almost independent of the scheduler used or the system load.

The lines corresponding to ‘JEQS only EQTS do not show the values at the
highest load levels in the plots, because the response time and confirmation times
are unreasonably high. When the system load passes a certain limit, the length of
the waiting queues grows so much that no new requests can be scheduled. When the
system load is high, the performance of ‘JEQS only EQTS' degrades very fast.

Theresponse time of Promote-1T is much shorter than the response time of JEQS.
As the system load increases, the performance of FSBS is also better than that of
JEQS. When using the fast jukebox, the performance of JEQS is proportionally
worse than when using the slow jukebox, because with the former more drive band-
width is wasted with each switch.

The response time of Promote-IT is aso shorter than that of FSBS. FSBS stages
the wholefile before giving access to the user. Therefore, the response of FSBS has
aslower limit the time to buffer the wholefile, while the lower [imit for Promote-IT
isthe time to buffer the first request unit. In Section 9.2 we show that the difference
in performance between Promote-IT and FSBS is even bigger when the data of a
request is stored in multiple RSM.

JEQS usestheresources poorly, becauseit performs multiple switchesfor reading
data from an RSM. In contrast, Promote-1T and FSBS use the resources efficiently
by performing the minimum amount of switches required to read the data. There-
fore, the robot utilization of JEQS is higher than that of Promote-IT and FSBS (see
Figures 9.1(f) and 9.2(f)). However, the fact that the robot utilization of ‘ JEQS only
EQTSs is proportionally lower than that of JEQS is not due to a better robot utiliza-
tion of the former, but to the fact that ‘ JEQS only EQTS' accepts new requests at a
lower rate.

The confirmation time of the aperiodic schedulers is shorter that that of JEQS
(see Figures 9.1(b) and 9.2(b)). The main difference can be seen with *JEQS only
EQTS, because this scheduler waits to accept a request until it can schedule it as
an EQT. Asthe system load increases, the possibilities of accepting arequest as an
EQT diminish drastically (see discussion in Section 7.1.1).

Periodic schedulers have a clear advantage over aperiodic schedulersin the com-
puting time (see Figures 9.1(d) and 9.2(d)). However, this advantage is not visible
to the end user, who notices only the response time and the confirmation time.?

2 When evaluating the performance of the optimal scheduler, we will show that the computing time
becomes an important parameter when it influences the confirmation time.

182 Chapter 9. Performance Evaluation

To compare the performance of the two versions of JEQS, it is useful to analyze
the maximum response time. Figure 9.1(e) shows that the maximum response time
of JEQSisvery high, whichisaresult from incorporating into the schedule anormal
guantum task with along period. Aswe explained in Chapter 7, scheduling normal
quantum tasks is a trade-off to make the scheduler able to cope with higher system
loads. Figure 9.1(c) shows that in 90% of the cases, scheduling normal quantum
tasks results in a better response time than scheduling only EQTs. Figure 9.1(b)
clearly shows that scheduling only EQTs aso results in long confirmation times.
When the schedulers are able to reject requests, the difference in performance be-
tween the two variations of JEQS nearly disappears, because the conflicting requests
(i.e., those that cannot be accepted as EQTS) are rejected.

We conclude that periodic scheduling isabad technique for scheduling ajukebox,
because even the FSBS scheduler—which is extremely simple—performs better
than JEQS in many cases. The bad performance of JEQS is not a characteristic
of this particular scheduler, but is intrinsic to any periodic jukebox scheduler. As
discussed in Section 5.6, a periodic scheduler either needs to use the robot in a
cyclic way, or take into account the worst-case time for robot contention in the
execution time of the tasks. Therefore, when using a periodic scheduler, the best-
case starting time for a request that does not produce a cache-hit is Q, even if the
system load is very low and all drives are idle. In the same scenario, the starting
time for Promote-IT isin most cases just the time to load the RSM in the drive and
read the data of the first request unit. For FSBS it is the time needed to stage al the
data of the request.

Therefore, in a situation with low system load, the best-case response time for
a periodic scheduler is around %1 Q worse than the general case for Promote-IT.
The difference gets even worse for the periodic schedulers when the system |load
increases, because the periodic scheduler wastes drive bandwidth with unnecessary
switches.

Test Setup

Therequest set consists of 1000 ASAP requeststhat follow a Zipf distribution. Each
request corresponds to one long-video file, because of the restrictions imposed by
JEQS. To be able to use JEQS the request must be only for data stored in one RSM
in acontiguous fashion. Additionally, JEQS needs the data to be continuous-media.
When using Promote-IT the request is split in request units of 100 MB in size.
The requests cannot be rejected, i.e., deadline and maximum confirmation time are
infinite.

The contents of the jukebox consist only of long videos. The bandwidth of the
videos is uniformly distributed in the range from 1 to 8 Mbps. Their duration is

9.1 Aperiodic vs. Periodic Scheduling 183

Fast-drives jukebox ‘ Slow-drives jukebox
Number of Robots 1
Number of Drives 4 (identical)
Load Time (seconds) 21.8-24.9
Unload Time (seconds) 14.3-17.4
Media Type Double-layered DV D-ROM
Drive Technology CAV CLVv
Transfer Speed (MBps) 7.96-20.53 7.96
Maximum Access time (seconds) 0.17 15

Table 9.2: Jukebox specification for the comparison between periodic and aperiodic
scheduling.

uniformly distributed in the range from 15 minutes to 2.5 hours. The data in the
jukebox is stored in double-layered DV Ds and each video is stored completely in
one disk. However, one disk may store multiple videos.

We use two jukebox architectures. Both architectures are based on asmartDAX as
the one modelled in Chapter 4. The jukeboxes have four identical drives. Table 9.2
shows the most important parameters of the jukebox. We refer to the jukeboxes as
fast-drives jukebox (or fast jukebox) and slow-drives jukebox (or slow jukebox).

The size of the cache is 10% of the jukebox capacity.

9.2 Pipelining vs. Full Staging

This section shows the benefits of pipelining over full staging. We compare the
performance of Promote-IT against that of FSBS. Aswe explained in Section 7.3.3
FSBS usesthe ESTF strategy of Promote-1T and the differenceisin the requestsfed
to the system. The requests for FSBS have all delta deadlines set to O, therefore, all
the data of arequest must be staged before the user can start consuming the data.

Figure 9.3 shows some performance results for simulations with the fast juke-
box described in the previous section (see Table 9.2). The plots in the figure show:
(a) the mean response time, (b) the maximum response time for 90% of the requests,
(c) the mean confirmation time, (d) the mean computing time, (e) the mean robot
utilization, and (f) the mean drive utilization.

The request set consists of 1000 ASAP requests that follow a Zipf distribution.
The datain the jukebox consists of 30% long videos, 30% short videos, 30% music
and 10% discrete data. The requestsfollow that pattern aswell. The requests cannot
be rejected, i.e., deadline and maximum confirmation time are infinite.

184 Chapter 9. Performance Evaluation

The previous section showed that Promote-IT provides shorter response times
than FSBS in the case of requests for data stored in one RSM. This section shows
that the differenceis even greater when the request involves multiple RSM (see Fig-
ures 9.3(a) and 9.3(b)). In the latter case, FSBS needs to perform multiple switches
before giving access to the data, while in most cases Promote-IT only needs to per-
form one switch to read the data corresponding to the first request unit and the rest
of the switches are performed at a later time, when the scheduler finds time for
them.

Additionally, Promote-IT has shorter confirmation times than FSBS, although
the difference is not very significant (see Figure 9.3(c)). The reason for the higher
confirmation time of FSBS is not the computing time (see Figure 9.3(d)), but the
fact that FSBS becomes overloaded earlier and must keep the requests longer in
the queue of unscheduled requests. Figures 9.3(e) and 9.3(f) show that the resource
utilization of FSBS and Promote-IT isvery similar.

9.3 Early vs. Conservative Dispatching

In this section we show that the performance of every heuristic jukebox sched-
uler benefits from early dispatching. The most important benefits occur when using
the LDL policy in Promote-1T. Also JEQS benefits from early dispatching. Even
a Front-to-Back strategy like the ESTF strategy of Promote-IT benefits from early
dispatching, however, not in asignificant way.

9.3.1 Back-to-Front Strategies

We compare the performance of Promote-IT and the extended conservative strategy.
The difference between LDL and the extended conservative strategy is the early
dispatching of the tasks, because the extended conservative strategy uses decoupled
load and unload operations and the same scheduling algorithm as Promote-I T (see
Section 7.3.2). We denote the extended conservative strategy simply as ‘ Conserva-
tive'.

Figure 9.4 shows some performance results for the same test set used in the pre-
vious section. Asin the previous section, the plots in the figure show: (a) the mean
response time, (b) the maximum response time for 90% of the requests, (c) the mean
confirmation time, (d) the mean computing time, (e) the mean robot utilization, and
(f) the mean drive utilization.

The response time and confirmation time of LDL and ESTF are very similar
when compared against the corresponding times of Conservative (see Figures 9.4(a)
and 9.4(b)). Furthermore, we showed in Section 6.10 that when the system load is

9.3 Early vs. Conservative Dispatching 185

0 U s 1888 | ¢ FSBS
300 f —— Promote-IT (LDL) . —+— Promote-IT (LDL)
-~ Promote-IT (ESTF) 800 | %~ Promote-IT (ESTF) o~
@ 250 . @ 700 |
e] e]
c . c L P
Ezoo . g 600 .
2 . 8 500 |
2 150 t _,.~°” 2 400 | . -
= 100 + oo ; = 300t o ®
J e 200 °
50 | =l <
K b 4
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
System load (requests’hour) System load (requests/hour)
(d) Mean response time. (b) Maximum response time for 90% of the re-
quests.
B EBs s 0% T RS 7
9 —— PromotelIT (LDL) P 03| — PromotelT(LDL) [\ /
8 [=~ Promote-IT (ESTF), i - Promote-IT (ESTF) | \ /
@ 7 @ 025 ¥
g ‘ g « B
g 67 Lo § o2 [
. P + y | *
g St i / ;ﬁ, 0.15 | o ;
o 4t ; ! / o Olor 0. |
€ x/ € S ;
= 8 / . 1. = /
1t d e i/\{ 005 e ek
0 == e B e TR 0
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
System load (requests/hour) System load (requests/hour)
(c) Mean confirmation time. (d) Mean computing time.
100 = rsBs 2 FsBs
90 r —— Promote-IT (LDL) 20 r —— Promote-IT (LDL)
go | ¥ Promote-I T (ESTF) 181 F Promote-I T (ESTF)
& 0t ' L6
5 60t 514
(8] (8]
& 5ot Szt
40 t 10 t
30 ¢ 8t
20 T — : : : : : : :
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
System load (requests/hour) System load (requests’hour)
(e) Mean robot utilization. (f) Mean drive utilization.
Figure 9.3: Pipelining vs. Full Staging.
186 Chapter 9. Performance Evaluation

350

300 ¢

Time (seconds)
5 & 8 &
o O O

al
o

0

al
o

—e-—- Conservative

—+— Promote-IT (LDL)
-~ Promote-IT (ESTF) 4
-
.
e
o ® * /9?/)%‘%,/
[EE * *71(,;/;{.’»

30 40 50 60 70 80 90 100 110

System load (requests/hour)

(d) Mean response time.

BR8RSE &

Time (seconds)
=N m w

=
g o u

e Conservative |
—— Promote-IT (LDL)
~*- Promote-IT (ESTF)

oo ” | /f‘i:#/.:;u%

30 40 50 60 70 80 90 100 110

100

90 r
80 r
70 r
60
50 -
40,

Percentage

30
20

§

System load (requests/hour)

(c) Mean confirmation time.

e Consarvative
—+— Promote-IT (LDL)
-~ Promote-IT (ESTF)

30 40 50 60 70 80 90 100 110

System load (requests/hour)

(e) Mean robot utilization.

1200 ‘ ; —
--e-- Conservative
1000 | —— Promote-IT (LDL) ?
~%- Promote-IT (ESTF) /
’UT :
S 800 ;
i 600 -
[} .
£ | -
= 400 iy
200 —
e sl

(b) Maximum response time for 90% of the re-

quests.

12

o o
o o P

Time (seconds)

o
[N

0

I
»

o B e ‘
30 40 50 60 70 80 90 100 110

*

30 40 50 60 70 80 90 100 110
System load (requests/hour)

e Consarvative
| —+— Promote-IT (LDL)
~*- Promote-IT (ESTF)

. X

‘

System load (requests/hour)

(d) Mean computing time.

Percentage
L=
i

N

(o)}

e Consarvative -
—+— Promote-IT (LDL)
-~ Promote-IT (ESTF)

30 40 50 60 70 80 90 100 110

System load (requests/hour)

(f) Mean drive utilization.

Figure 9.4: Early vs. conservative dispatching using a Back-to-Front scheduling strategy.

9.3 Early vs. Conservative Dispatching

187

1200 o Early bispatdhing ‘ ‘ 451%8 | e ‘ Early bispatdhing
1000 F No Early Dispatching Y —+— No Early Dispatching
/ 4000 ¢
. 800 /A 3500 |
8 § 2000 |
‘qE'I 600 /+ Tg’ 2500
= = 2000
[L s | =
400 1500 |
200 | e | 1000 | /
0 10 20 30 40 50 60 0 10 20 30 40 50 60
System load (requests/hour) System load (requests/hour)
(d) Mean response time. (b) Maximum response time for 90% of the re-
quests.
800 ‘ — - 1 ‘ ———
e Early Dispatching --e- Early Dispatching
700 | —— No Early Dispatching 1 —— No Early Dispatching
600 | /1 05 |
_ 500 L f;‘/ B _
g J/ [g
o 400 r /A o 0 oo o o o o o o o o
£ £
= 300 | =
200 -0.5]
100
0 e e e e 1)))))
0 10 20 30 40 50 60 0 10 20 30 40 50 60
System load (requests/hour) System load (requests/hour)
(c) Mean confirmation time. (d) Mean computing time.
100 e ‘Early If)ispatcﬁing 100 e ‘Early If)ispatcﬁing
—— No Early Dispatching —— No Early Dispatching
80 — 80 |
] 0] : i!
g 60| ® 60 A
2 2 P
20 20
0oL—— : : : : 0 : : : : :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
System load (requests/hour) System load (requests/hour)
(e) Mean robot utilization. (f) Mean drive utilization.

Figure 9.5: Early vs. conservative dispatching when using JEQS.

188 Chapter 9. Performance Evaluation

high, LDL performs slightly better than ESTF. This reinforces the idea that Back-
to-Front is an interesting scheduling mechanism, when it is combined with early
dispatching.

The confirmation time of Promote-IT is also lower than of Conservative (see
Figure 9.4(c)). Conservative often fails to schedule incoming requests, because the
starting time they should be assigned is too far into the future. Thus, the requests
stay in the queue of unschedul ed requests until the scheduler can incorporate them to
the schedule. The computing time of Promote-1T isalso shorter than that of Conser-
vative (see Figure 9.4(d)), because the latter repeatedly attempts to build schedules
for the requests in the queue without success.

Asthe system load increases, the difference in performance between Promote-IT
and Conservative grows very fast. At the highest load level plotted, Conservativeis
unable to handle the load, because the waiting queue is too long.

The robot and drive utilization of Conservative is much less than that of LDL
(see Figures 9.4(e) and 9.4(f)). When not using early dispatching, the resources are
left idle, even if there are tasks in the schedule. Thus, when new requests arrive,
their chances to be scheduled immediately are lower, even when the system load is
low, because the scheduler has tasks scheduled for the future. The plots also show
that while the resource utilization of LDL grows proportionally to theincrease of the
system load, the resource utilization of Conservative saturates at around 90 reg/hour.

9.3.2 JEQS and Front-to-Back Strategies

Figure 9.5 shows the performance improvements in JEQS that result from using
an early dispatcher. We use the request set and the slow jukebox presented in Sec-
tion 9.1.

When dispatching early the system has the opportunity to read datafrom the RSM
loaded in the drive. Thus, early dispatching reduces the number of switches needed
to read the data. When there is enough idle time, the system has more opportunities
of keeping the RSM loaded in the drive more often, thus, reducing the robot uti-
lization (see Figure 9.5(e)). As aresult the drives are used more efficiently—within
theintrinsic inefficiency of JEQS—resulting in slightly higher drive utilization (see
Figure 9.5(f)).

Using the resources more efficiently results in shorter response times (see Fig-
ures 9.5(a) and 9.5(b)) and shorter confirmation times (see Figure 9.5(c)). Given
that the computing time of JEQS is nearly negligible, there is no noticeable differ-
ence in the computing time (see Figure 9.5(d)).

Figure 9.6 shows that even ESTF, which builds the schedul es Front-to-Back, can
profit from early dispatching. However, in this case, the benefit is small.

9.3 Early vs. Conservative Dispatching 189

100 220

e Early Dispatching —e- Early Dispatching |
90 1 —— No Early Dispatching 200 | —— No Early Dispatching /]
80 r 180 /
~ 70| ~ 160 | /
ﬁ 60 r & 140 t /.
g 50 - ’ | g 120 | ‘//““,
F o4] F 100 | b
ol / B 1 80 //
0] e] 60 | e
o— O I
10 L L L L L L L L 40 @O L L L L L
60 65 70 75 80 85 90 95 100 105 60 65 70 75 80 85 90 95 100 105
System load (requests’hour) System load (requests’hour)
(8) Mean response time. (b) Maximum response time for 90% of the re-
quests.

Figure 9.6: Early vs. conservative dispatching when using ESTF.

Early dispatching is not beneficial for every request. In some occasions early
dispatching may result in the new incoming request finding all drives busy and
having to wait until one becomes free again. However, averaged over alarge number
of requests, early dispatching always results beneficial .

9.4 Decoupled vs. Coupled Load and Unload

In this section we compare the extended aggressive strategy and Promote-IT. We
will denote the extended aggressive strategy simply as ‘Aggressive’ . The difference
between the former strategy and Promote-1T isthat Aggressive couplesthe load and
unload into a single switch operation.® This means that the RSM stay loaded into
the drives until the drives are needed again. Therefore, Aggressive needsto perform
first an unload before using a drive, even if the drive and the robot are idle before
the request arrival.

We show some performance results for the fast jukebox and the slow jukebox
described in Table 9.2. The test set is the one described in Section 9.2: 30% long
videos, 30% short videos, 30% music and 10% discrete media. Figures 9.7, 9.8, 9.8,
and 9.10 show the results when the requests cannot be rejected (infinite deadline
and maximum confirmation time). The first two figures show the performance of
the system under load and medium load, while the other two show the performance
also under high load.* Figures 9.11, and 9.12 show the corresponding results when

3 In Sections 5.4.2 and 7.3.1 we discussed the extensions to the original aggressive strategy, which
differed much more from Promote-IT.
4 Thisis the same approach we used in Section 6.10 to compare the strategies of Promote-IT.

190 Chapter 9. Performance Evaluation

34

2| . Aggrve‘ *
—— Promote-IT (LDL) Pl
30 - % PromotelIT (ESTF) .~
728 o @
2261 e]
§ 24 JS . 4
w22t //]
E207]
F s | A o
16 ¥
14 %- ¢ *
12 —_—
30 35 40 45 50 55 60 65 70 75
System load (requests/hour)
(a) Mean response time.
0.3 ———————
--e- Aggressive
05t Promotes.T (LDL)
) ~x- Promote-IT-(EST
B o2} .
2 / e
8 o015 | /
£ // |
g 0! \\: / A *
005 M X
O L L L L L L L L
30 35 40 45 50 55 60 65 70 75
System load (requests/hour)
(c) Mean confirmation time.
70 ——————
--e- Aggressive
65 | —— Promote-IT (LDL)
60 | —*- Promote-IT (ESTF)
o 55
Zso |
g 45
40
35r
30 |~
L
25

30 35 40 45 50 55 60 65 70 75
System load (requests/hour)

(e) Mean robot utilization.

(6206 BB o) BEN|
o1 O

o

Time (seconds)

8 &

35

a1 o

~e- Aggressve |
—+— Promote-IT (LDL) P
r - Promote-IT (ESTF)...®
o -
K o
L . *///*
oA
.
A
7 // K |
r__— K 1
— Heee
s *]
*- ‘%'
30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(b) Maximum response time for 90% of the re-

quests.
0.065 ————
—e—- Aggressive
0.06 - —— Promote-IT (LDL)
- 0055 | ¥ Promote-IT (ESTF)
€ 005¢ .
8 ooss |
g o004 . —
F 0035 - _—
0.03 2.;% B
005 t*————
30 35 40 45 50 55 60 65 70 75
System load (requests/hour)
(d) Mean computing time.
15 ——————
--e- Aggressive
14+ —— Promote-IT (LDL)
13 | ~*- Promote-IT (ESTF)
o 12
g11 r
;ilo,
9 L
8 L
7 L
6! L L L L L L L L
30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(f) Mean drive utilization.

Figure 9.7: Uncoupled vs. coupled load and unload for the fast jukebox under low and
medium load.

9.4 Decoupled vs. Coupled Load and Unload

191

~N @
o O

Time (seconds)
5 8 3

N W
o O

.-

e

. Aggrve ‘ ‘ ‘ ‘ ‘ .
—— Promote-IT (LDL) i
-~ Promote-IT (ESTF)

10

Time (seconds)
N
(62 OV)

30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(a) Mean response time.

. A‘ggrve ‘
—— Promote-IT (LDL) /
-~ Promote-IT (ESTF) /

o

30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(c) Mean confirmation time.

¥

. Aggrve ‘
—— Promote-IT (LDL)
~*- Promote-IT (ESTF)

Percentage
88EEL G 3R

30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(e) Mean robot utilization.

120
110
100
90
80 -
70 ¢

Time (seconds)

¥

. A‘ggrve‘
—

-~ Promote-IT (ESTF)

60
50 |

Promote-IT (LDL)

40 T Y SO B
30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(b) Maximum response time for 90% of the re-

quests.

0.09
0.08
0.07
0.06
0.05
0.04

Time (seconds)

0033

. Aggrvé ; R
—— Promote-IT (LDL) /\ f
~*— Promote-IT (ESTF) [

0.02

30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(d) Mean computing time.

Percentage
8 8 & &8 &

20 r

. Aggrve ‘
—— Promote-IT (LDL)
-~ Promote-IT (ESTF)

15

30 35 40 45 50 55 60 65 70 75

System load (requests/hour)

(f) Mean drive utilization.

Figure 9.8: Uncoupled vs. coupled load and unload for the slow jukebox under low and
medium |oad.

192

Chapter 9. Performance Evaluation

100 ————
—-e- Aggressive ¥
90 [—— Promote-IT (LDL) o
80 | ~*- Promote-IT (ESTF) 7
& ,
e 70
g 60 |
‘g 50 t
= 40| L
30t .o
ot A
30 40 50 60 70 80 90 100 110
System load (requests/hour)
(d) Mean response time.
6 ‘ — ‘
—e-- Aggressive
5| —+ Promote-IT (LDL) T
-~ Promote-IT (ESTF) /
B4t
oy
Q
83
e ‘
= 2 //\
1
TR !
R % e S et Sk

30 40 50 60 70 80 90 100 110

System load (requests/hour)

(c) Mean confirmation time.

100 w w T
—e- Aggressive
90 r —— Promote-IT (LDL)
-~ Promote-IT (ESTF)
80
70 -
60 -
50 -
40 L
30 ¢
20

Percentage

System load (requests/hour)

(e) Mean robot utilization.

30 40 50 60 70 80 90 100 110

Time (seconds)
e N
N
o

|+ B
Ko KK

e Ag‘gr‘ve ‘ ‘ ‘ .
—+— Promote-IT (LDL)
-~ Promote-IT (ESTF)

o

40 50 60 70 80 90 100 110
System load (requests/hour)

(b) Maximum response time for 90% of the re-

quests.

0.35

03 r

Time (seconds)

0.05

0.25
02
0.15 ¢
01+

Y

. Aégrve ‘ ‘ t ‘,/+

—— Promote-IT (LDL) j\\ /

%~ Promote-IT (ESTF) | \ /
| Y

/

/\\i /
K e

St *

——t *

A+ oy
PO I SRR SRRT B SR S

0 L L L L L L L
30 40 50 60 70 80 90 100 110

System load (requests/hour)

(d) Mean computing time.

Percentage
L=
N A O

e Agnge
—+— Promote-IT (LDL)
-~ Promote-IT (ESTF)

30

40 50 60 70 80 90 100 110
System load (requests/hour)

(f) Mean drive utilization.

Figure 9.9: Uncoupled vs. coupled load and unload for the fast jukebox under high load.

9.4 Decoupled vs. Coupled Load and Unload

193

250

200

Time (seconds)

150 ¢

e ‘Aggrve
—— Promote-IT (LDL) 1
-~ Promote-IT (ESTF) &

O 1 1 1 1 1
30 40 50 60 70 80 90
System load (requests’hour)
(d) Mean response time.
14 : -
—e-- Aggressive
12 + —— Promote-IT (LDL)
~*- Promote-IT (ESTF)
@ 10
e
c
B °
D 6t
£ -
= 4t
27 i . /:/ R
0 &= D I e ‘
30 40 50 60 70 80 90
System load (requests/hour)
(c) Mean confirmation time.
80 \ - ‘ ‘ ‘
5L Aggressive *
—— Promote-IT (LDL)
70 - .x- Promote-IT (ESTF)
65 r
() L
8)60
*g 55 ¢
O 50 +
85t
40 L
35r
30 |
251 : : : : :
30 40 50 60 70 80 90

System load (requests/hour)

(e) Mean robot utilization.

1000

900 ¢
800
700
600 1
500
400 ¢
300 1
200

Time (seconds)

100
0

30

e ‘Aggrve ‘
—+— Promote-IT (LDL)
-~ Promote-IT (ESTF)

g e e e

40 50 60 70 80
System load (requests/hour)

90

(b) Maximum response time for 90% of the re-

quests.

0.35

03

o
N

Time (seconds)

I3
=

0.05
0

0.25

0.15

30

n;rfvyjﬁyif . ¥*, ;v*

. ‘Aggrve ‘
—— Promote-IT (LDL) ya
-~ Promote-I T (ESTF) /

40 50 60 70 80
System load (requests/hour)

90

(d) Mean computing time.

e ‘Aggrve
—— Promote-IT (LDL)
-~ Promote-IT (ESTF)

80

70
System load (requests’hour)

40 50 60 90

(f) Mean drive utilization.

Figure 9.10: Uncoupled vs. coupled load and unload for the slow jukebox under high load.

194

Chapter 9. Performance Evaluation

\ \ \ \ \ \ 16 \ \ \
e Aggressive E e Aggressive
o5 | —— Promote-IT (LDL) Py 14+ —— Promote-IT (LDL)
: -~ Promote-IT (ESTF) ; ; 120 ¥ Promote-I T(ESTF)
@ A
& 2] RS
g 15| ﬁ 08 |
[} | /o
g Ll [\e | £ 06| o\
. 4 o 04 ; / ™
05 | AN, | o ® o g e o
0 '\'N:?;‘/?\%‘ S ! ! 0 Jiﬁ*i: e e . .
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
System load (requests/hour) System load (requests/hour)
() Regjection ratio. (b) Mean confirmation time.
34 ; ; : ; 90 : : !
30 |~ Aggressive [S e Aggressive */%
—— Promote-IT (LDL) 80 | —+ Promote-IT (LDL) =
30 I %~ PromotelIT (ESTF), ~*] ~%- Promote-IT (ESTF)
528 e =
g 26 L .v." f77 ¥ =
g2 P / X
— 22 & o /’ X
E20 ¢ D
18 T X
16 ’,,,X/ o KK
14 %% *
12 : : : : : : : 20 : : : : : : :
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
System load (requests/hour) System load (requests/hour)
(c) Mean response time. (d) Mean robot utilization.
100 i i y i i i i 22 : . .
- Aggressive e - Aggressive
90 | —— Promote-IT (LDL) . / 1 20 r —— Promote-IT (LDL) }
-~ Promote-I T (EST| F) o 181 F Promote-I T (ESTF) /,;%
g 80 J A .
§ 70 | — e glof
.- .
g | . P F 1
g 60 I L) S | Bl
= 50 r o % 1 10
40 A A S 1 8
30 e 6 D
30 40 50 60 70 80 90 100 110 30 40 50 60 70 80 90 100 110
System load (requests/hour) System load (requests/hour)
(e) Maximum response time for 90% of the re- (f) Mean drive utilization.
guests.

Figure 9.11: Uncoupled vs. coupled load and unload for the fast jukebox when rejecting
requests.

9.4 Decoupled vs. Coupled Load and Unload 195

5 ; ;
a5 Aggressive
. —+— Promote-IT (LDL)
4+ -x- PromoteIT (ESTF)
o 357
g 3
§ 25+
15+ . ‘
1 L e ’
o -
05 .. o

30 40 50 60 70 80
System load (requests’hour)

() Rejection ratio.

90

34 T T
e Aggressive
32 —— Promote-IT (LDL) N
30| ~*- PromoteIT (ESTF) _*°~ i
-g 28 L o B]
§ 26 Lo * 7
. P —
T 24 /~/;
g e
=22 o
20 e
A e
18 ¢ o *
*
16

30 40 50 60 70 80
System load (requests/hour)

(c) Mean response time.

90

95 " —
ol Aggressive
—— Promote-IT (LDL) . e/

85 % PromoteIT (ESTF) .-
%7 80 .
g7t ’
g 70 .
EEJ/ gg 4; oe” "// — *
Foe5 | // e

50 *7

45 9/;*

40

30 40 50 60 70 80
System load (requests/hour)

(e) Maximum response time for 90% of the re-

quests.

Figure 9.12: Uncoupled vs. coupled load and unload for the slow jukebox when rejecting

requests.

90

Time (seconds)

Percentage

e ‘Aggrve
251 Promote-IT (LDL) /]
’ -~ Promote-IT (ESTF) o [t
2t ' &
15
1 [.
g
- i
05 S
0 e A . . .
30 40 50 60 70 80 90
System load (requests/hour)
(b) Mean confirmation time.
75 : -
ol Aggressive
—— Promote-IT (LDL)
65 - Promote-IT (ESTF)
60
55 ¢
50 L
45 L
40 L
35r
30
25 : : : : :
30 40 50 60 70 80 920
System load (requests/hour)
(d) Mean robot utilization.
50 ; : :
—e Aggressive
45 I —— Promote-IT (LDL) M*

-~ Promote-IT (ESTF)

40 50 60 70 80 90
System load (requests/hour)

(f) Mean drive utilization.

196

Chapter 9. Performance Evaluation

reguests can be rejected. In this case, the deadline of every request is5 minutes and
the maximum confirmation timeis 30 seconds.

When the requests cannot be rejected the plots in the figures show: (a) the mean
response time, (b) the maximum response time for 90% of the requests, (c) the mean
confirmation time, (d) the mean computing time, (€) the mean robot utilization, and
(f) the mean drive utilization. When the requests can be rejected the plots in the
figures show: (a) the rgjection ratio, (b) the mean confirmation time, (c) the mean
response time, (d) the mean robot utilization, (€) the maximum response time for
90% of the requests, and (f) the mean drive utilization.

When the system load is low and medium, Promote-IT provides shorter response
times than Aggressive (see Figures 9.7(a), 9.8(a), 9.7(b) and 9.8(b)). Also when
the system is able to reject requests during overload, Promote-IT provides shorter
response times than Aggressive (see Figures 9.11 and 9.12). The rejection ratio of
Promote-IT and Aggressiveis similar (see Figures 9.11(a) and 9.12(a)).

However, when the system load is high and the robot is a clear bottleneck in the
system, asis the case of fast jukebox, Aggressive has a better mean response time
than Promote-IT (see Figure 9.9(a)). In this situation, the response time of Aggres-
siveissimilar to that of LDL, although Aggressive builds schedules Front-to-Back
and LDL builds them Back-to-Front. However, Aggressive delays the last unload
of a drive as much as possible, until the drive is needed again, which is the orig-
inal goal of a Back-to-Front strategy. When the system load is low or medium, it
is highly probable that at the time when a new request arrives there are idle re-
sources. Therefore, delaying the unloads as much as Aggressive does affects the
performance negatively. When the load is high it does not really matter, because
there is no opportunity to unload the drives early anyhow.

When the robot is not a strong bottleneck, Promote-IT provides shorter response
times than Aggressive, even under high system loads (see Figure 9.10). In this case
unloading late is not beneficial: also ESTF performs better than LDL.

The maximum response time of the Aggressive strategy islower and more stable
than that of Promote-IT under high system loads. However, the maximum response
timefor 90% of the requests of Promote-IT isbetter (see Figures 9.9(b) and 9.10(b)).

The mean confirmation time of Promote-IT and Aggressive is similar. Further-
more, when the bottleneck of the system isin the use of the robot, the mean confir-
mation and computing time of ESTF resembles more that of Aggressive, than the
corresponding values of LDL. The reason is that both ESTF and Aggressive build
the schedules Front-to-Back, using a similar algorithm.

The mean drive and robot utilization of Aggressive is nearly identical to that
of LDL when not rejecting requests. When rejecting requests, the drive and robot
utilization depend on the rgjection ratio.

9.4 Decoupled vs. Coupled Load and Unload 197

9.5 Heuristic vs. Optimal Scheduling

The goal of this section isto evaluate the heuristics used by Promote-I T when com-
pared against an optimal scheduler. We compare the optimal scheduler presented in
Section 7.2, Promote-IT and the extended aggressive strategy. Due to the inability
of the optimal scheduler to deal with high system loads and complex requests, the
results shown in this section are restricted to quite simple request sets.

Figures 9.13 and 9.14 show the performance comparison between the heuristic
and optimal schedulers using two jukebox architectures: the fast jukebox and the
slow jukebox. These jukeboxes are different from the ones used in the previous
sections. The test setup is described at the end of the section.

Figures 9.13 and 9.14 show the performance comparison between the heuris-
tic and optimal schedulers. The plot of the optimal scheduler is interrupted early,
because we could not obtain results for higher loads. Performing the runs shown
already took several weeks for the optimal scheduler. As the system load increases,
the number of request units that need to be rescheduled when a new request arrives
also increases. Therefore, the optimal scheduler is unable to handle higher system
loads, because its complexity is exponential in the number of request unitsto sched-
ule.

The plotsin the figures show: (a) the mean response time, (b) the maximum re-
sponse time for 90% of the requests, (c) the mean computing time, (d) the mean
robot utilization, and (€) the mean drive utilization. We do not show the confirma-
tion time, because the optimal scheduler assumes that time does not pass during
computation. As we explained in Section 7.2, without this assumption the optimal
scheduler is unable to compute schedules, because by the time the computation to
schedule arequest has finished—which can easily take several weeks—the schedule
computed should be completely irrelevant and invalid.

The response time provided by Promote-IT is near the optimal response time (see
Figures 9.13(a), 9.14(a), 9.13(b) and 9.14(b)). Moreover, the difference in response
time between Promote-IT and the optimal scheduler is smaller than the difference
between Aggressive and Promote-IT. The plots indicate that the difference in re-
sponse time between Promote-IT and the optimal is larger as the system load in-
creases. Therefore, we regret that we cannot run the optimal scheduler with higher
loads.

The computing time of the optimal scheduler increases exponentially when the
load of the system increases, while the computation time of the heuristic schedulers
is nearly constant (see Figures 9.13(c) and 9.14(c)). The computing times of the
optimal scheduler are so high that the scheduler cannot be used in an on-line system.

The mean robot and drive utilization of the optimal scheduler, Promote-IT and
Aggressiveis nearly identical. Moreover, we have observed that the optimal sched-

198 Chapter 9. Performance Evaluation

200 | Optimal b " Optima
o Aggressive 700 - = Aggressive 1
380 | . Promote-IT (LDL) - Promote-IT (LDL)
370 1 —— Promote-IT (ESTF) 650 —— Promote-IT (ESTF)
jg 360 g g
2 350 | 2 600
£ 340 £ 550 |
= 330 o [
320 f . 500 f
238 [° e 450 L
[g g J g
290 ‘/\4 L L L L L L 400 e, I %\/ L L
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
System load (requests/hour) System load (requests/hour)
(d) Mean response time. (b) Maximum response time for 90% of the re-
guests.
350 ; — : . . !
—e— Optimal 4
300 + & Aggressive
~*- Promote-IT (LDL)
250 —— Promote-IT (ESTF)
8 200 |
Q
£ 150 |
'_
100 ¢
50
0 - - "'g'*”"g Rt
4 6 8 10 12 14 16 18
System load (requests/hour)
(c) Mean computing time.
2(2) [~e" Optimal | T 50 Optimal .
= Aggressive 45 = Aggressive 1
18 | -x- Promote-IT (LDL) 40 + ~*- Promote-IT (LDL)
16 | Promote-IT (ESTF) Promote-I T (ESTF)
P14 | ol
S <30
© 12t @
] © 25+
Fof b
8l 20
6 L 15 +
4+ 10 +
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

System load (requests/hour)

(d) Mean rabot utilization.

System load (requests’hour)

(e) Mean drive utilization.

Figure 9.13: Heuristic vs. optimal scheduling for the jukebox architecture with the fast

jukebox.

9.5 Heuristic vs. Optimal Scheduling

199

1150

e Optimal e Optimal
1100 | = Aggressive g 2000 | F Aggressive P
1050 | ~*~ Promote-IT (LDL) - Promote-IT (LDL) o
g 1000 - —+— Promote-IT (ESTF) %‘;‘ 1800 —+— Promote-IT (ESTF)
& 950 B o L) @
1600
.g 900 ¢ g .g
F 850 | . DK%,/; F 1400 | s
800 o Dv/f/f‘/,df:”']
® I el 1200
750 ¢ e e
700 : : : : : 1000 : e : :
3 4 5 6 7 8 9 3 4 5 6 7 8 9
System load (requests/hour) System load (requests/hour)
ime. imu i ()
a) Mean response time. b) Maximum response time for 90% of the re-
guests.
1000 : o
90| ¢ Optimal ?
| -~ Aggressive :
800 - -x- Promote-IT (LDL)
700 | —— Promote-IT (ESTF)
@ 600 |
Tg 500 f v
g 400 ‘
300 | /
200
100 -4
0 T SR S
3 4 5 6 7 8 9
System load (requests/hour)
(c) Mean computing time.
14 i " 65 i " 3
13| ~* Optima ¥ e Optimal i
5 Aggressive 60 - = Aggressive
12 | -x- Promote-IT (LDL) 55 [-~ Promote-IT (LDL)
11t Promote-IT (ESTF) 50 Promote-I T (ESTF)
]] r
810 L ‘8)45 | -
g9t a0l
g8 &
71 35
6 L 30 ¢
5} 25 +
' [
4 20

4 5 6 7
System load (requests/hour)

(d) Mean rabot utilization

8

4 5 6 7 8
System load (requests’hour)

(e) Mean drive utilization.

Figure 9.14: Heuristic vs. optimal scheduling for the jukebox architecture with the slow

jukebox.

200

Chapter 9. Performance Evaluation

Fast-drives jukebox ‘ Slow-drives jukebox
Number of Robots 1
Number of Drives 4 (identical)
Load Time (seconds) 21.4-24.7 22.1-254
Unload Time (seconds) 14.2-17.6 23.1-26.5
Media Type Single-layered DVD-ROM
Drive Technology CLv
Transfer Speed (MBps) 6.45 244
Access time (seconds) 0.1 0.1

Table 9.3: Jukebox specification for evaluation of heuristic vs. optimal schedulers.

uler does not unload an RSM before all the data has been read in any of these runs
and other tests we have performed, which are not showed here. Thisis an important
result in favour of the minimum switching model, on which Promote-IT is based,
because even if the optimal scheduler has the possibility of performing intermediate
switches, it does not do so.

Test Setup

The request set consists of 200 ASAP requests for long videos. The optimal sched-
uler does not deal with the cache administration. Therefore, each request corre-
sponds to a different video and the cache is empty at the beginning of the runs.
Thus, there are no cache-hits.

The jukebox only contains long videos, which were generated in the same way as
those described in Section 9.1. The bandwidth of the videosis uniformly distributed
in the range from 1 to 8 Mbps. Their duration is uniformly distributed in the range
from 15 minutes to 2.5 hours. However, the data in the jukebox is stored in single-
layered DVDs.

When building the request sets we have to make a trade-off between keeping the
number of request units per request low and having more than one request unit per
RSM. The computational complexity of the optimal scheduler increases exponen-
tially with the number of request units to schedule, so we should only split each
filein asmall number of request units. On the other hand, we want to give the op-
timal scheduler the possibility to switch an RSM without reading al the requested
data from the RSM. Therefore, it is desirable to have more than one request unit
per RSM. In the tests we show here, we chose to chop the files in request units of
2.5 GB. Thus, the number of request units per request is between 1 and 4 and the
number of RSM involved is1 or 2.

9.5 Heuristic vs. Optimal Scheduling 201

g
-2 |=%_ |5
£23|8c3 8 3
19} clE8 1 gs88 | ¢ v €
m Lo | Lcaw |35 (% =
n x D5 X O 5 et w o
o uw<<o;m |[WO®»m | a) @]
Flexibility: requests ++ ++ ++ ++ — +
Flexibility: hardware | ++ ++ ++ —
Response time — + - ++ — o+
Confirmation time + ++ + ++ — -
Computing time ++ ++ ++ ++ +++ -
Deal with high load + ++ — ++ —— ___

Table 9.4: Summary of the performance comparison. The notation used is. excellent
(+++), very good (++), good (+), bad (=), very bad (—-), and unusable (——-).

We show simulation results for two jukebox architectures: the fast-drives juke-
box (or fast jukebox) and the slow-drives jukebox (or slow drives). In both cases
the jukebox is a smartDA X, as the one modelled in Chapter 4, with four identical
drives. Table 9.3 shows the characteristics of each jukebox. In both cases the drives
use CLV technology and the access time is constant. The requirement for constant
access time is needed by the optimal scheduler.

9.6 Summary

Throughout this chapter we have shown that Promote-IT performs better than the
other schedulers. However, the magnitude of the performance difference variesin
each case. In this section we put the differences in context and compare al the
schedulers among each other.

We evaluate the capacity of the schedulersto deal with flexible requests and hard-
ware. We also evaluate the schedulers regarding the response time, confirmation
time, computing time and the capacity to deal with high load. Table 9.4 summa-
rizes the evaluation. The classification we assigned to the schedulersin the last four
categories is the result of observing their performance in multiple test setups. Al-
though, the classification is quite subjective and difficult to quantify, we believe that
it reflects correctly the average performance of the schedulers.

We classify the schedulers that can deal with any combination of the request pa-
rameters defined for the requests (see Section 3.2) as ‘very good'. We classify the
optimal scheduler only as ‘good’, because it cannot handle requests with deadlines

202 Chapter 9. Performance Evaluation

and maximum confirmation times. The optimal scheduler is also restricted in the
complexity of therequestsit can deal with, because of the computational complexity
involved. We classify JEQS as ‘very bad’, because JEQS puts very strong restric-
tions on the requests. they must contain only one request unit, the data requested
can only be continuous-media, and the bandwidth is limited by the bandwidth of
the drives.

Promote-1T, FSBS, and the extended conservative strategy can deal with any type
of jukebox hardware, thus, they are classified as ‘ very good' . The extended aggres-
sive strategy restricts the functionality and scope of the robots. However, these are
not very serious restrictions, because in most jukeboxes there is only one robot.
Therefore, we classify the extended aggressive strategy as ‘good’. JEQS and the
optimal scheduler require that all the drives are identical. Additionally the optimal
scheduler requires the access time to be constant. These restrictions are strong and,
thus, we classify both schedulers as ‘bad’ regarding flexibility of hardware. We do
not classify them as ‘very bad’, because at least they can deal with multiple drives
and shared robots, which are jukebox characteristics that many of the schedulerswe
discussed in Section 2.2.3 cannot deal with.

Theresponse time of the optimal scheduler is‘excellent’, becauseit givesthe best
possible response time. The response time of Promote-1T is‘very good’, because it
responds better than all the other heuristic schedulers and is close to the optimal as
far as we could measure. The response time of the extended aggressive strategy is
‘good’, but considerably worse than that of Promote-IT. JEQS and FSBS have ‘ very
bad’ response times, while the extended conservative strategy has ‘bad’ response
times. As we have shown, in some cases FSBS is better that JEQS and in some
other JEQS is better.

The confirmation time of Promote-IT and the extended aggressive strategy are
‘very good’" compared to those of the other strategies. The extended conservative
strategy and FSBS perform worse than the former two schedulers, but still much
better than JEQS. The extended conservative strategy and FSBS provide a confir-
mation within a reasonable time when being able to rgect requests, while JEQS
does not. Finally, the optimal scheduler cannot even be used on-line, and it requires
computing the schedules assuming that time does not pass during the computation.

JEQS scores best when evaluating the computing time. Basically, it cannot be
better because it just needs to evaluate a couple of formulae to decide if a request
Is schedulable. Thus, we evaluate JEQS as having an ‘excellent’ computing time.
Promote-IT, FSBS, and the two extended strategies have ‘very good’” computing
times. They compute the schedulesin just few milliseconds. The optimal scheduler,
instead, may require days or weeks to compute a single schedule. Therefore, we
evaluateit as ‘unusable’ on thiscriterion.

9.6 Summary 203

The optimal scheduler cannot deal with high system loads, because the computa-
tional complexity increases as a function of the system load and it becomes ‘ unus-
able'. JEQS and the extended conservative strategy score as ‘very bad’, because in
both cases the response time increases very fast asthe system load increases and the
rejection ratio is high when the system is able to reject requests. The performance
of the other three schedulers degrades in a gracious manner as the system load in-
creases, but given itsinitial restrictions, FSBS performs comparatively worse than
Promote-1T and the extended aggressive strategy.

Figure 9.15 showsin agraphical way the comparison among the aperiodic heuris-
tic schedulers. It shows some results for the fast jukebox and the slow jukebox de-
scribed in Table 9.2. The request set used is the same 30/30/30/10 request set used
in Sections 9.2, 9.3.1 and 9.4.

Figures 9.15(a) and 9.15(b) show that FSBS provides the worst response times
among all heuristic aperiodic schedulers, but it can cope with higher loads better
than the extended conservative strategy.

204 Chapter 9. Performance Evaluation

350

300 r

Time (seconds)
a5 o 8 B
o O O O O

0

+- FSBS
= Conservative 4
% Aggressive

—— Promote-IT (LDL)
—-e— Promote-IT (ESTF) ~

P

a A

A | T | *//%
]

e

»

30 40 50 60 70 80 90 100
System load (requests/hour)

110

(8) Mean response time for fast jukebox.

88 &

+- FSBS 2
= Conservative
~*- Aggressive
—+— Promote-IT (LDL)

w
’§30 [e Promote-IT (ESTF) -
§25]
gzo—)
Eo .
10 | . f s
5 s
O by o

30 40 50 60 70 80 90 100 110

System load (requests/hour)

(c) Mean confirmation time for fast jukebox.

12

1 L

Time (seconds)
o o o
N [e)] [ee)

o
N

+- FSBS r
= Conservative

% Aggressive

—+— Promote-IT (LDL)

-e- Promote-IT (ESTF)

I

30 40 50 60 70 80 90 100
System load (requests/hour)

110

(e) Mean computing time for fast jukebox.

450 i i
+- FSBS
400 r = Conservative
350 | ~* Aggressive
o —— Promote-IT (LDL) .
g 300 | ..o Promote-IT (ESTF)
éﬁ 250 4 1
o 200 r o 9
E 150 | S
[a -
100 | S
e e il
30 40 50 60 70 80 90
System load (requests/hour)
(b) Mean response time for slow jukebox.
40 ‘ ‘ ;
+- FSBS 4
35 = Conservative
30l * Aggressive

)]

Time (seconds)
= NN
(62N

—— Promote-IT (LDL)
--e- Promote-IT (ESTF)

10 ¢ A : “ . .
5 ' - - % T
0 v g *7/,36/‘{ .

30 40 50 60 70 80

90
System load (requests/hour)

(d) Mean confirmation time for slow jukebox.

0.35 N

03 =
¥

0.25

o
N}

0.15 ¢

Time (seconds)

o
[

005§

—+— Promote-IT (LDL)

4

"FSBS'
Conservative
Aggressive

Promote-I T (ESTF)

" ,,.%7/;7“
T o
.~

.T’%’.“.ﬁff/i/ ." V' -

0
30

40 50 60 70 80
System load (requests/hour)

90

(f) Mean computing time for slow jukebox.

Figure 9.15: Comparison of all aperiodic heuristic schedulers using the fast jukebox and
the slow jukebox.

9.6

Summary

205

206 Chapter 9. Performance Evaluation

Chapter 10

Conclusions

This dissertation addresses the problem of scheduling tertiary storage in order to
provide real-time guarantees. It shows that tertiary storage can be used effectively
in systems with real-time requirements, for instance in a hierarchical multimedia
archive. However, careful scheduling isneeded in order to provide those guarantees,
to use the resources efficiently, and to provide short response times to the users.

Although the scheduling problem we deal with is specific—a most every interest-
ing real-life scheduling problem is—we can derive some general scheduling princi-
ples, which can serve as a guideline for anyone dealing with a complex scheduling
problem. The principles are:

Separate the scheduling-problem model from the scheduling algorithm.
It isimportant to formalize the scheduling problem, so that different heuristic
and optimal algorithms can be compared. The formalization of the schedul-
ing problem also helpsto abstract from the particular application and ook for
similar scheduling problems in other environments. For example, by mod-
elling our scheduling problem formally it is clearer to see that it has many
common features with industrial production and logistics applications.

Model the scheduling problem accurately.

The scheduling problem model should not impose unnecessary coupling be-
tween operations, restrictions on the hardware model or restrictions on the
reguest structure. These unnecessary restrictions are only eliminated by pro-
viding an accurate formal model of the scheduling problem. We show that
coupling the unload and load operations into a single switch operation has a
negative influence on the system performance, however, most existing juke-
box schedulers enforce that coupling.

Model the hardware accurately.
The hardware model should provide good estimates of the operation times.
Moreover, it should clearly identify the variables that influence the behaviour

207

of the hardware, so that different hardware can be easily modelled and the
limitations of the scheduling problem can be defined. Additionally, such a
hardware model allows usto identify other environments where the scheduler
can also be used.

Identify the restrictions of the scheduling-problem model.

The restrictions on the hardware model and the operations should be clearly
visible and appear in the formalization of the scheduling-problem model.
Making the restrictions visible allows us to compare the different models and
decide which model is more suitable for the envisioned usage scenarios. For
example, we show that the dedicated-robots model is not suitable for schedul -
ing atertiary storagejukebox, but can be used in amanufacturing environment
to schedule an automated storage/retrieval system.

Separate schedule building and dispatching.

Separating these two functions allows the schedule builder to concentrate on
building feasible schedules, without optimizing the use of the resources. The
dispatcher is responsible for utilizing the jukebox resources in an efficient
manner. We use an early dispatcher that dispatches the tasks to the jukebox
controller as early as possible. The dispatcher may modify the schedules built
by the scheduler aslong as no task in the schedul e is delayed and the sequence
and resource constraints are respected.

Define the heuristics used in the scheduling algorithm and the dispatcher.

The heuristics used in the algorithms should be defined clearly, so that they
can be easily exchanged and compared. Also the implementation of the al-
gorithms should be modular and the interfaces between the different com-
ponents should be small and well defined. In our scheduling agorithms, we
identify the heuristics for guessing the starting time of the requests, for sort-
ing the jobs to schedule and for pruning the tree of resource assignments.
We analyze and implement several options, and discuss their advantages and
disadvantages.

Use a flexible developing and testing environment.

Use an environment that permits the test of schedulers under different usage
scenarios and with different hardware. The environment should also make
it possible to easily plug in other schedulers in order to evaluate different
schedulers under the same conditions. The HMA permits the easy plug-in of
different schedule builders and dispatchers. This has allowed us to evaluate
different schedulers and multiple parameter combinations within each sched-
uler. Additionally, JukeTools has tools to easily simulate different hardware,

208

Chapter 10. Conclusions

generate workloads, evaluate the output, and easily find design and imple-
mentation problems in the schedulers.

Hide ‘real’ and ‘simulated’ from the scheduler.
Use the same code for real and ssmulated users and real and ssimulated hard-
ware. This facilitates a faster and more reliable move from the simulation
phase to the production phase. The algorithms can be thoroughly tested off-
line in a simulation environment, while regularly testing if they do perform
as expected in the real environment. JukeTools provides this functionality for
jukebox schedulers.

This dissertation demonstrates the benefits of these principles by applying them to
the creation of the flexible and efficient jukebox scheduler: Promote-1T. Promote-1T
is based on the minimum switching model, which is a scheduling-problem model
that only imposes restrictions on the utilization of the resources that are benefi-
cia for the scheduler performance. The most important restriction of the model—
reading all the requested data of an RSM (removable storage medium) once the
RSM isin adrive—results in good overall system performance, because the num-
ber of media switchesis minimized. The scheduling algorithm used by Promote-1T
can use multiple strategies to sort and incorporate the jobs into a schedule. The
heuristic for pruning the tree of resource assignments is efficient, both in perfor-
mance and complexity. However, it can easily be replaced by another strategy if
desired. The early dispatcher of Promote-IT can reorder the tasks for the robots in
such a way that the jukebox resources are utilized effectively, while guaranteeing
that all the deadlines are met. Last, but not least the implementation of Promote-IT
is so flexible that we could implement some of the other schedulers evaluated in the
dissertation by slightly modifying or parameterizing the algorithms of Promote-IT.

We are convinced that the hierarchical multimedia archive and Promote-1T will
eventually be used in a production system to serve a large user population. More-
over, we also believe that Promote-1T can be used effectively in other environments,
such asindustria production and logistics.

10.1 Directions for Future Research

In order to effectively use the HMA in a production environment, further analysis
should be done to dimension the secondary storage level and determine the degree
of distribution of the cache. Another topic that requires further analysisis the con-
nection and data flow between tertiary and secondary storage. There are interesting
open questions regarding the technology (e.g., fibber, SCSI), regarding the access
to the devices (e.g., should we have an all-to-all connection or should the hard disks

10.1 Directions for Future Research 209

and the jukebox drives be grouped into clusters?), and regarding the type of file
systems to use in secondary storage (e.g., should we use mixed-mediafile systems,
or should we have some file systems for continuous-media and some others for
best-effort data?).

Another topic for further research is to make the schedul ers fault-tolerant so that
they can deal with hardware failures, which cause operations to take longer than
estimated. Thanks to the unwanted misbehaviour of our jukebox, we noticed that
Promote-1T can adapt to operations taking longer than scheduled in quite a graceful
manner, especially when using Back-to-Front. Apart from recuperating from oper-
ations taking longer than estimated, a fault-tolerant scheduler should keep informa-
tion about notoriously problematic RSM and estimate the time to operate on these
RSM taking into account their defects. A way to implement this with our hardware
model is to create a separate model for each problematic RSM and consider it a
special type of RSM.

A promising direction for future work isto adapt the request structure and sched-
uler for ajust-in-time production environment. However, some important questions
need to be answered before embarking into such an adventure. Is it feasible to use
the type of requests proposed in this dissertation in a production environment to
schedule the retrieval of components from an automated storage/retrieval system?
How should the buffer be implemented in such an environment? Isit cost effective
to implement such a system?

210 Chapter 10. Conclusions

Bibliography

[1]

[2]

(3]

[4]

[5]

6]

[7]
8]

[9]

[10]

Atlas Copco AB. The case of the exploding CD-ROM record. http://www.
gedata.se/e_js.htm.

Demet Aksoy, Michael Franklin, and Stan Zdonik. Data staging for on-demand
broadcast. In Proceedings of the International Conference on \Very Large Data Bases
(VLDB), pages 571-580, September 2001.

Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana deOliveira. Char-
acterizing reference locality in the WWW. In Fourth International Conference on
Parallel and Distributed Information Systems (PDIS’ 96), pages 92—-107. IEEE Com-
puter Society, December 1996.

Kevin C. Almeroth and MostafaH. Ammar. An alternative paradigm for scalable on-
demand applications: Evaluating and deploying the interactive multimedia jukebox.
Knowledge and Data Engineering, 11(4):658-672, 1999.

Stergios V. Anastasiadis, Kenneth C. Sevcik, and Michael Stumm. Server-based
smoothing of variable bit-rate streams. In Proceedings 9" ACM Multimedia Confer-
ence, pages 147-158, Ottawa, Canada, October 2001.

Martin W. P. Savel shergh Ann Campbell, LIoyd Clarke. Inventory routing in practice.
In D. Viego P. Toth, editor, The Vehicle Routing Problem, SIAM monographs on
discrete mathematics and applications, pages 309-330. SIAM, 2002.

Asaca. Specification of the asacajukeboxes. http://www.asaca.com.

Norbert Ascheuer, Matteo Fischetti, and Martin Grotschel. Solving the asymmetric
travelling salesman problem with time windows by branch-and-cut. Math. Program.,
90(3):475-506, 2000.

Mikhail J. Atallah, editor. Algorithms and Theory of Computation Handbook. CRC
Press, 1999.

Sanjoy K. Baruah, N. K. Cohen, C. Greg Plaxton, and Donald A. Varvel. Propor-
tionate progress. A notion of fairnessin resource allocation. In ACM Symposium on
Theory of Computing, pages 345-354, 1993.

211

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

Jeanne Behnke and Alla Lake. Eosdis: Archive and distribution systems in the year
2000. In Proceedings of the 8th NASA Goddard Conference on Mass Sorage Systems
and Technologies and 17th |EEE Symposium on Mass Storage Systems, April 2000.

Jacek Blazewicz, Klaus Ecker, Gunter Schmidt, and Jan Weglarz. Scheduling in
Computer and Manufacturing Systems. Springer Verlag, Berlin, second edition,
1994.

Janek Blazewicz, Jan Karel Lenstra, and Alexander H.G. Rinnooy Kan. Scheduling
subject to resource constraints: classification and complexity. Discrete Appl. Math.,
5:11-24, 1983.

Peter Bosch. Mixed-media file systems. PhD thesis, University of Twente, June 1999.

Peter Bosch and Sape J. Mullender. Cut-and-paste file-systems: Integrating simu-
lators and file-systems. In USENIX Annual Technical Conference, pages 307318,
1996.

Jihad Boulos and Kinji Ono. Continuous data management on tape-based tertiary
storage systems. Technical report, NACSIS, November 1997.

Jihad Boulos and Kinji Ono. Continuous data management on tape-based tertiary
storage systems. In Proceedings of the 5th International Workshop on Interac-
tive Distributed Multimedia Systems and Telecommunication Services, volume 1483
of Lecture Notes in Computer Science, pages 290-301. Springer Verlag, Berlin,
September 1998.

Lee Bredlau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and
zipf-like distributions: Evidence and implications. In INFOCOM (1), pages 126-134,
1999.

David W. Brubeck and Lawrence A. Rowe. Hierarchical storage management in a
distributed VoD system. |EEE Multimedia, 3(3):37-47, 1996.

Hojung Cha, Jongmin Lee, Jachak Oh, and Rhan Ha. Video server with tertiary
storage. In Proc. of the Eighteenth |EEE Symposium on Mass Storage Systems, April
2001.

Sheng-Han Gary Chan and Fouad A. Tobagi. Designing hierarchical storage systems
for interactive on-demand video services. In Proc. of |EEE Multimedia Applications,
Services and Technologies, June 1999.

Ann Louise Chervenak. Tertiary Storage: An Evaluation of New Applications. PhD
thesis, Dept. of Comp. Science, University of California, Berkeley, December 1994.

Ann Louise Chervenak. Challenges for tertiary storage in multimedia servers. Par-
allel Computing, 24(1):157-176, January 1998.

212

Bibliography

[24]

[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

John L. Coleand Merrit E. Jones. The | EEE storage system standards working group
overview and status. In Proceedings of the 14th |EEE Symposium on Mass Sorage
Systems. |EEE, September 1995.

Simon de Groot. Scheduling real-time streams for heterogeneous storage media.
Master’s thesis, Department of Computer Science, University of Twente, 2002.

Peter J. Denning. Effects of scheduling on file memory operations. In AFIPS Spring
Joint Computer Conference, pages 9-21, April 1967.

Disc. Specification of the disc jukeboxes. http://www.disc-storage.com.

Standardizing Information and Communication Systems ECMA. Data interchange
on read-only 120 mm optical data disks (CD-ROM). Standard ECMA 130, ECMA,
June 1996.

Craig Federighi and Lawrence A. Rowe. Distributed hierarchical storage manager for
avideo-on-demand system. In Storage and Retrieval for Image and Video Databases
(SPIE), pages 185197, February 1994.

Fujitsu. Storage management overview. White Paper, January 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley professional com-
puting series. Addison-Wesley, Reading, Mass., 1995.

Robert Geist and Stephen Daniel. A continuum of disk scheduling agorithms. ACM
Transactions on Computer Systems (TOCS), 5(1):77-92, 1987.

Jim Gemmell, Harrick M. Vin, Dilip D. Kandlur, P. Venkat Rangan, and Lawrence A.
Rowe. Multimedia storage servers: A tutorial and survey. IEEE Computer, 28(5):40—
49, November 1995.

Costas Georgiadis, Peter Triantafillou, and Christos Faloutsos. Fundamentals of
scheduling and performance of video tape libraries. Multimedia Tools and Appli-
cations, 18(2):137-158, 2001.

Shahram Ghandeharizadeh and Cyrus Shahabi. On multimediarepositories, personal
computers, and hierarchical storage systems. In Proceedings of th ACM Multimedia
Conference, 1994.

Lena Golubchik and Raj Kumar Rajendran. A study on the use of tertiary storagein
multimediasystems. In Proc. of Joint NASA/IEEE Mass Storage Systems Symposium,
March 1998.

Ron L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexander H.G. Rinnooy
Kan. Optimization and approximation in deterministic sequencing and scheduling
theory: asurvey. Annals of Discrete Mathematics, 5:287-326, 1979.

Bibliography 213

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

Mikell P. Groover. Automation, Production Systems and Computer Integrated Man-
ufacturing. Prentice-Hall, second edition, 2001.

Robert Grossman, Xiao Qin, and W. Xu. An architecture for a scalable, high-
performance digital library. In Proceedings of the 14th IEEE Symposium on Mass
Sorage Systems, September 1995.

Karsten Halse. Modeling and solving complex vehicle routing problems. PhD thesis,
Informatics and Mathematical Modelling, Technical University of Denmark, 1992.

Ferdy Hanssen, Pieter Hartel, Tjalling Hattink, Pierre Jansen, J. Scholten, and Jurri-
aan Wijnberg. A real-time Ethernet network at home. In Michael Gonzalez Harbour,
editor, Proceedings Work-in-Progress session 14" Euromicro international confer-
ence on real-time systems (Research report 36/2002, Real-Time Systems Group, Vi-
enna University of Technology), pages 5-8, Vienna, Austria, June 2002.

Hewlett-Packard. Specification of the HP jukeboxes.
http://www.hewlett-packard.com/go/optical.

Bruce K. Hillyer, Rajeev Rastogi, and Avi Silberschatz. Storage technology: Status,
issues, and opportunities. Unpublished technical report.

Bruce K. Hillyer and Avi Silberschatz. On the modeling and performance character-
istics of a serpentine tape drive. In Proc. of the 1996 ACM Sgmetrics Conference on
Measurement and Modeling of Computer Systems, pages 170-179, May 1996.

Bruce K. Hillyer and Avi Silberschatz. Random 1/O scheduling in online tertiary
storage systems. In Proc. of the 1996 ACM SIGMOD International Conference on
Management of Data, pages 195204, June 1996.

Bruce K. Hillyer and Avi Silberschatz. Scheduling non-contiguous tape retrievals.
In Proc. of Joint NASA/IEEE Mass Storage Systems Symposium, pages 113 — 123,
March 1998.

Hitachi. Large capacity optical disc video recording format "blu-ray disc’ estab-
lished, February 2002.

W.A. Horn. Some simple scheduling algorithms. Naval Res. Logist. Quart., 21:177—
185, 1974.

Petros | oannou, Anastasios Chassiakos, Hossein Jula, and Ricardo Unlaub. Trucksin
metropolitan areas with adjacent ports. Technical Report FWHA/CA/OR-2002/14,
University of Southern California, California State University at Long Beach, 2002.

James R. Jackson. Scheduling a production line to minimize maximum tardiness.
Management Science Research Project 43, UCLA, January 1955.

214

Bibliography

[61] Pierre G. Jansen, Ferdy Hanssen, and Maria Eva Lijding. Early quantum task
scheduling. Technical Report TR-CTIT-02-48, Centre for Telematics and Informa-
tion Technology, Univ. of Twente, The Netherlands, November 2002.

[52] Theodore Johnson. Queuing models of tertiary storage. In Proc. of the 5th NASA
Goddard Mass Storage Systems and Technol ogies Conference, September 1996.

[53] Theodore Johnson and Ethan L. Miller. Benchmarking tape system performance. In
Proc. of Joint NASA/IEEE Mass Sorage Systems Symposium, March 1998.

[54] Theodore Johnson and Ethan L. Miller. Performance measurements of tertiary stor-
age devices. In Proc. of 24th International Conference on Very Large Data Bases,
pages 50-61, August 1998.

[55] JVC. Specification of the JVC jukeboxes. http://www. jcvpro.co.uk.

[56] S.-W. Kim, Sung-Jo Kim, Tae Il Jeong, and S. W. Yoo. The optimal retrieval start
times of media objects for the multimedia presentation. Information and Software
Technology, 43(4):219-229, March 2001.

[57] John T. Kohl, Carl Staelin, and Michael Stonebraker. HighLight: Using a log-
structured file system for tertiary storage management. In Proceedings of the
USENIX Winter 1993 Technical Conference, pages 435-447, San Diego, CA, USA,
2529 1993.

[58] Niklas Kohl. Exact methods for Time Constrained Routing and Related Scheduling
Problems. PhD thesis, Informatics and Mathematical Modelling, Technical Univer-
sity of Denmark, 1995.

[59] Kubota. Specification of the kubota jukeboxes. http://www.kubota.co.jp.

[60] Jesper Larsen. Parallelization of the Vehicle Routing Problem with Time Windows.
PhD thesis, Informatics and Mathematical Modelling, Technical University of Den-
mark, 1999.

[61] Siu-Wah Lau and John C. S. Lui. Scheduling and replacement policies for a hier-
archical multimedia storage server. In Proc. of Multimedia Japan 96, International
Symposium on Multimedia Systems, March 1996.

[62] Siu-Wah Lau, John C. S. Lui, and P. Wong. A cost-effective near-line storage server
for multimedia system. In Proc. of the 11th International Conference on Data Engi-
neering, pages 449-456, March 1995.

[63] Siu-Wah Lau and John C.S. Lui. Scheduling and data layout policies for a near-line
multimedia storage architecture. Multimedia Systems, 5:310-323, September 1997.

Bibliography 215

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Eugene L. Lawler, Jan Karel Lenstra, Alexander H. G. Rinnooy Kan, and David B.
Shmoys, editors. Thetraveling salesman problem. Wiley and Sons, New York, 1985.

Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and Peter Brucker. Complexity of
machine scheduling problems. Ann. Discrete Math., 1:343-362, 1977.

MariaEvaLijding, Peter Bosch, and Sape J. Mullender. Tertiary storage for nemesis.
Technical report, University of Twente, October 1999.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Sun Mi-
crosystems, second edition, 1999.

C. L. Liuand James W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM, 20(1):46-61, 1973.

Michael T. LoBue. Surveying today’s most popular storage interfaces. Computer,
35(12):48-55, December 2002.

S. Mahajan, B. Rao, and Brett A. Peters. A retrieval sequencing heuristic for miniload
end-of-aisle automated storage/retrieval systems. International Journal of Produc-
tion Research, 36(6):1715-1731, 1998.

Oge Marques and Borke Furht. Issues in designing contemporary video database
systems. In Proceedings of the IASTED International Conference on Internet and
Multimedia Systems and Applications, pages 198-211, October 1999.

Ethan Leo Miller. Storage Hierarchy Management for Scientific Computing. PhD
thesis, University of California at Berkeley, 1995.

ChanHo Moon and Hyunchul Kang. Heuristic algorithms for 1/O scheduling for
efficient retrieval of large objects from tertiary storage. In Proceedings of the Aus-
traliasian Database Conference, pages 145-152. |EEE, February 2001.

Sachin More and Alok Choudhary. Scheduling queries on tape-resident data. In
Proceeding of the European Conference on Parallel Computing, 2000.

James W. Mott-Smith. The jaquith archive server. Technical Report CSD-92-701,
University of California, Berkeley, September 1992.

Internet Surveys NUA. How many online? http://www.nua.com/surveys/
how many online, 2002.

OSsl. 190-9660:1988 - Information Processing - Volume and file structure on CD-
ROM for information interchange.

HweeHwa Pang. Tertiary storage in multimedia systems. Staging or direct access?
ACM Multimedia Systems Journal, 5(6):386—399, November 1997.

216

Bibliography

[79] Byung Chun Park, Edward H. Frazelle, and John A. White. Buffer sizing models for
end-of-aisle order picking systems. |EE Transactions, 31:31-38, 1999.

[80] PCTechGuide. http://www.pctechguide.com.

[81] Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. An
exact constraint logic programming agorithm for the travelling salesman with time
windows. Transportation science, 32(1), February 1998.

[82] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing Systems,
8(3):221-254, Summer 1995.

[83] Michael Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, 1995.

[84] Pioneer. Specification of the pioneer jukeboxes.
http://www.pioneerelectronics.com.

[85] Viswanath Poosala. Zipf'slaw. Technical Report 900 837 0750, Bell Labs.

[86] Sunil Prabhakar, Divyakant Agrawal, and Amr El Abbadi. Impact of media ex-
changes in robotic storage libraries. Technical Report TRCS97-07, University of
Cadlifornia, Santa Barbara, 1997.

[87] Sunil Prabhakar, Divyakant Agrawal, Amr El Abbadi, and Ambuj Singh. Efficient
1/0O scheduling in tertiary libraries. Technical Report TRCS96-26, University of Cal-
ifornia, Santa Barbara, 1996.

[88] Sunil Prabhakar, Divyakant Agrawal, Amr El Abbadi, and Ambuj Singh. Scheduling
tertiary 1/0 in database applications. In Proc. of the 8th International Workshop on
Database and Expert Systems Applications, pages 722—727, September 1997.

[89] Sanjay Ranade. Mass Storage Technologies. Meckler, 1991.

[90] The Rea-time for Java Expert Group. The Real-time Specification for Java, June
2000.

[91] A.L.NarasimhaReddy and Jim Wyllie. Disk scheduling inamultimedial/O system.
In Proceedings of the 1st ACM international Conference on Multimedia, pages 225—
233. ACM Press, 1993.

[92] Dickon Reed and Robin Fairbairns. Nemesis : The kernel - overview. Technical
report, University of Cambridge, May 1997.

[93] Bernd Reiner and Karl Hahn. Tertiary storage support for large-scale multidimen-
sional array database management systems. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB 2002), August 2002.

Bibliography 217

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. IEEE
Computer, 27(3):17-28, 1994.

Koichi Sadashige. Optical recording and recordable DV D overview. In Proceedings
of the 8th Nasa Goddard Conference On Mass Sorage Systems And Technologies
and 17th IEEE Symposium On Mass Sorage Systems, April 2000.

Ingolf Sander. Fluorescent multilayer optical data storage. White Paper.

Sunita Sarawagi. Query processing in tertiary memory databases. In Very Large
Databases (VLDB) Journal, pages 585596, 1995.

Martin W. P. Savelsbergh. Local search for routing problems with time windows.
Annals of Operations Research, 4:285-305, 1986.

Martin W. P. Savel sbergh. An efficient implementation of local search for constrained
routing problems. European Journal on Operations Research, 47:75-85, 1990.

Sanjeev Setia, Ophir Frieder, and David Grossman. Data Storage Technology, chap-
ter 2.

Vijnan Shastri, V. Ragjaraman, H.S. Jamadagni, P. Venkat Rangan, and Srihari
Sampath-Kumar. Design issues and caching strategies for CD-ROM-based multi-
media storage. In Multimedia Computing and Networking, volume 2667 of SPIE
Proceedings, pages 3047, 1996.

DAX Archiving Solutions. Specification of the DAX jukeboxes. http://www.

smartdax.com.

JM. Spivey. The Z Notation. C.A.R. Hoare series editor. Prentice Hall, second
edition, 1992.

ASM Mass Storage Systems. Specification of the ASM jukeboxes. http: //www.
asm-jukebox.de.

ASM Mass Storage Systems. Switch time of the 1400 series. Personal communica-
tions with Cornelia Reinhards.

Danny Teaff, Dick Watson, and Bob Coyne. The architecture of the High Perfor-
mance Storage System (HPSS). In Proc. of the Fourth NASA GSFS Conference on
Mass Sorage Systems and Technologies, 1995.

Peter Triantafillou and loannis Georgiadis. Hierarchical scheduling algorithms for
near-line tape libraries. In Proc. of the 10th International Conference and Workshop
on Database and Expert Systems Applications, pages 50-54, 1999.

218

Bibliography

[108]

[109]

[110]

[111]

[112]
[113]
[114]

[115]

[116]

[117]

Peter Triantafillou and Thomas Papadakis. On-demand data el evation in hierarchical
multimedia storage servers. In Proc. of 23rd International Conference on Very Large
Data Bases (VLDB' 97), pages 226235, 1997.

Shiao-Li Tsao, Yueh-Min Huang, Chia-Chin Lin, Shiang-Chung Liou, and Chien-
Wen Huang. A novel data placement scheme on optical discsfor near-vod servers. In
Proceedings of the 4th Inter national Workshop on Interactive Distributed Multimedia
System and Telcommunication Services, volume 1309 of Lecture Notes in Computer
Science, pages 133-142. Springer, 1997.

Pascal van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
grammig Series. MIT Press, Cambridge, MA, 19809.

Rodney van Meter and Minxi Gao. Latency management in storage systems. In
Proceedings of the 4th Symposium on Operating System Design & Implementation,
2000.

W3C. XS Transformations (XSLT) 1.0, November 1999.
W3C. Extensible Markup Language (XML) 1.0, second edition, October 2000.

Mark Wallace, Stefano Novello, and Joachim Schimpf. Eclipse: A platform for con-
straint logic programming, 1997.

Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In Proccedings of the Inernational
Workshop on Memory Management, September 1995.

Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling algorithms
for modern disk drives. In Proceedings of the 1994 conference on Measurement and
Modeling of Computer Systems, pages 241-251. ACM Press, 1994.

George Kingsley Zipf. Relative frequency as a determinant of phonetic change.
reprinted from Harvard Studiesin Classical Philiology , XL, 1929.

Bibliography 219

220 Bibliography

Titles in the IPA Dissertation

Series

J.O. Blanco. The Sate Operator in Process Al-
gebra. Faculty of Mathematics and Computing
Science, TUE. 1996-01

A.M. Geerling. Transformational Develop-
ment of Data-Parallel Algorithms. Faculty of
Mathematics and Computer Science, KUN.
1996-02

P.M. Achten. Interactive Functional Pro-
grams. Models, Methods, and Implementation.
Faculty of Mathematics and Computer Science,
KUN. 1996-03

M.G.A. Verhoeven. Parallel Local Search.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-04

M.H.G.K. Kesseler. The Implementation of
Functional Languages on Parallel Machines
with Distrib. Memory. Faculty of Mathematics
and Computer Science, KUN. 1996-05

D. Alstein. Distributed Algorithms for Hard
Real-Time Systems. Faculty of Mathematicsand
Computing Science, TUE. 1996-06

J.H. Hoepman. Communication, Synchroniza-
tion, and Fault-Tolerance. Faculty of Mathe-
matics and Computer Science, UvVA. 1996-07

H. Doornbos. Reductivity Arguments and Pro-
gram Construction. Faculty of Mathematics
and Computing Science, TUE. 1996-08

D. Turi. Functorial Operational Semanticsand
its Denotational Dual. Faculty of Mathematics
and Computer Science, VUA. 1996-09

A.M.G. Peeters. Sngle-Rail Handshake Cir-
cuits. Faculty of Mathematics and Computing
Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering Speci-
fication Formalism. Faculty of Mechanical En-
gineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type In-
ference. Faculty of Mathematics and Comput-
ing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Par-
tition Refinement for Model Checking. Faculty
of Mathematics and Computing Science, TUE.
1996-13

M.M. Bonsangue. Topological Dualitiesin Se-
mantics. Faculty of Mathematics and Computer
Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs of
Small Treewidth. Faculty of Mathematics and
Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Transforma-
tionsin Context. Faculty of Computer Science,
UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data
Types. Faculty of Mathematics and Computing
Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type Theory in
Logic and Mathematics. Faculty of Mathemat-
ics and Computing Science, TUE. 1997-04

221

C.J. Bloo. Preservation of Termination for Ex-
plicit Substitution. Faculty of Mathematics and
Computing Science, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra.
Faculty of Mathematics and Computing Sci-
ence, TUE. 1997-06

FA.M. van den Beuken. A Functional Ap-
proach to Syntax and Typing. Faculty of Math-
ematics and Informatics, KUN. 1997-07

A.W. Heerink. Insand Outsin Refusal Testing.
Faculty of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-
Event Smulator for Systems Engineering. Fac-
ulty of Mechanical Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for
Multiprocessor Computation. Faculty of Math-
ematics and Computer Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Faculty of
Mathematics and Computing Science, TUE.
1998-04

A.A. Basten. In Terms of Nets: System Design
with Petri Nets and Process Algebra. Faculty
of Mathematics and Computing Science, TUE.
1998-05

E. Voermans. Inductive Datatypes with Laws
and Subtyping — A Relational Model. Faculty
of Mathematics and Computing Science, TUE.
1999-01

H. ter Doest. Towards Probabilistic Uni-
fication-based Parsing. Faculty of Computer
Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Smulation of
Surface Processes. Faculty of Mathematics and
Computing Science, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evo-
lutionary Search. Faculty of Mathematics and
Natural Sciences, UL. 1999-04

E.l. Barakova. Learning Reliability: a Study
on Indecisiveness in Sample Selection. Faculty
of Mathematics and Natural Sciences, RUG.
1999-05

M.P. Bodlaender. Schedulere Optimization in
Real-Time Distributed Databases. Faculty of
Mathematics and Computing Science, TUE.
1999-06

M.A. Reniers. Message Sequence Chart: Syn-
tax and Semantics. Faculty of Mathematics and
Computing Science, TUE. 1999-07

J.P. Warners. Nonlinear approaches to satis-
fiability problems. Faculty of Mathematics and
Computing Science, TUE. 1999-08

J.M.T. Romijn. Analysing Industrial Protocols
with Formal Methods. Faculty of Computer Sci-
ence, UT. 1999-09

P.R. D’Argenio. Algebras and Automata for
Timed and Stochastic Systems. Faculty of Com-
puter Science, UT. 1999-10

G. Fabian. A Language and Smulator for Hy-
brid Systems. Faculty of Mechanical Engineer-
ing, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts
and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neural
Prediction System. Faculty of Mathematics and
Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Mathe-
matics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool for Par-
allel Progam Construction. Faculty of Mathe-
matics and Computing Science, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and Satecraft
in the Dutch Republic. Faculty of Mathematics
and Computer Science, UvVA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified ap-
proach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the De-
sign of Delay-Insensitive Communicating Pro-
cesses. Faculty of Mathematics and Natural
Sciences, RUG. 2000-03

222

Bibliography

W.O.D. Griffioen. Studies in Computer Aided
\erification of Protocols. Faculty of Science,
KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the Math-
Soad Editor. Faculty of Mathematics and Com-
puting Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant. Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriving
Correct Programs. Faculty of Mathematics and
Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging Het-
erogeneous Applications. Faculty of Natural
Sciences, Mathematics and Computer Science,
UvVA. 2000-08

E. Saaman. Another Formal Specification Lan-
guage. Faculty of Mathematics and Natural Sci-
ences, RUG. 2000-10

M. Jelasity. The Shape of Evolutionary Search
Discovering and Representing Search Space
Structure. Faculty of Mathematics and Natural
Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics
and Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java programs
in higher order logic using PVS and Isabelle.
Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Faculty
of Mathematics and Computing Science, TU/e.
2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Sudies in Interactive Visualiza-
tion. Faculty of Natural Sciences, Mathematics
and Computer Science, UVA. 2001-06

A.G. Engels. Languages for Analysis and Test-
ing of Event Sequences. Faculty of Mathematics
and Computing Science, TU/e. 2001-07

J. Hage. Sructural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology: A
Case-study into Acute Effects of Air Pollution
Episodes. Faculty of Mathematics and Natural
Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Checking.
Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-
currency control and recovery protocols. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk. Generation and presentation
of formal mathematical documents. Faculty of
Mathematics and Computing Science, TU/e.
2001-12

A.T. Hofkamp. Reactive machine control: A
simulation approach using y. Faculty of Me-
chanical Engineering, TU/e. 2001-13

D. BoSnacki. Enhancing state space reduc-
tion techniques for model checking. Faculty of
Mathematics and Computing Science, TU/e.
2001-14

M.C. van Wezel. Neural Networks for Intelli-
gent Data Analysis. theoretical and experimen-
tal aspects. Faculty of Mathematics and Natural
Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specification
and Analysis of Industrial Systems. Faculty of
Mathematics and Computer Science and Fac-
ulty of Mechanical Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Natural
Sciences, Mathematics and Computer Science,
UVA. 2002-03

S.P. Luttik. Choice Quantification in Process
Algebra. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UVA. 2002-04

Bibliography

223

R.J. Willemen. School Timetable Construc-
tion: Algorithms and Complexity. Faculty of
Mathematics and Computer Science, TUle.
2002-05

M.LA. Stoelinga. Alea Jacta Est: \erifica-
tion of Probabilistic, Real-time and Parametric
Systems. Faculty of Science, Mathematics and
Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular Computing.
Faculty of Mathematics and Natural Sciences,
UL. 2002-07

A. Fehnker. Citius, Vilius, Mélius. Guiding
and Cost-Optimality in Model Checking of
Timed and Hybrid Systems. Faculty of Science,
Mathematics and Computer Science, KUN.
2002-08

R. van Stee. On-line Scheduling and Bin Pack-
ing. Faculty of Mathematics and Natural Sci-
ences, UL. 2002-09

D. Tauritz. Adaptive Information Filtering:
Concepts and Algorithms. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-10

M.B. van der Zwaag. Models and Logics
for Process Algebra. Faculty of Natura Sci-
ences, Mathematics, and Computer Science,
UVA. 2002-11

J.I. den Hartog. Probabilistic Extensions of
Semantical Models. Faculty of Sciences, Di-
vision of Mathematics and Computer Science,
VUA. 2002-12

L. Moonen. Exploring Software Systems. Fac-
ulty of Natural Sciences, Mathematics, and
Computer Science, UVA. 2002-13

J.1. van Hemert. Applying Evolutionary Com-
putation to Constraint Satisfaction and Data

Mining. Faculty of Mathematics and Natural
Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2002-15

Y.S. Usenko. Linearization in uCRL. Faculty
of Mathematics and Computer Science, TU/e.
2002-16

J.J.D. Aerts. Random Redundant Sorage for
Video on Demand. Faculty of Mathematics and
Computer Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused: Tech-
niques for component composition and con-
struction. Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UVA. 2003-02

J.M.W. Visser. Generic Traversal over Typed
Source Code Representations. Faculty of Natu-
ral Sciences, Mathematics, and Computer Sci-
ence, UVA. 2003-03

S.M. Bohte. Spiking Neural Networks. Fac-
ulty of Mathematics and Natural Sciences, UL.
2003-04

T.A.C. Willemse. Semanticsand Verificationin
Process Algebras with Data and Timing. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2003-05

S.V. Nedea. Analysis and Smulations of Cat-
alytic Reactions. Faculty of Mathematics and
Computer Science, TU/e. 2003-06

M.E.M. Lijding. Real-time Scheduling of Ter-
tiary Sorage. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science, UT.
2003-07

224

Bibliography

Biography

Maria Eva Lijding was born in Buenos Aires, Argentina, on May 14, 1970. From 1993 to 1996 she
held a research grant for students from the University of Buenos Aires. In May 1996 she graduated
in Computer Science at the University of Buenos Aires. Her master’sthesis entitled ' A New Internal
Routing Protocol’ won the third prize of the Latin-American contest for master’s works in computer
science organized by CLEI and UNESCO.

After graduation she worked for the National Ingtitute of Industrial Technology (INTI) and the
University of Buenos Aires, both in Argentina. In August 1997 she got a postgraduate grant from the
Y PF Foundation to research and study abroad. In the context of this grant she stayed nine month at
the Computer Architecture department of the Polytechnic University of Catalonia (Spain) and three
month at the Distributed and Embedded Systems department of the University of Twente. In the
latter she has further pursued a Ph.D.

225

	Acknowledgements
	Abstract
	Samenvatting
	Contents
	1 Introduction
	1.1 Hierarchical Storage
	1.2 Hierarchical Multimedia Archive
	1.3 Jukebox Scheduling
	1.4 Summary
	1.5 Outline of the Dissertation

	2 Background and Related Work
	2.1 Scheduling Theory
	2.1.1 Aperiodic Scheduling
	2.1.2 Periodic Scheduling
	2.1.2 Periodic Scheduling
	2.1.3 Problem Complexity

	2.2 Scheduling of Tertiary Storage
	2.2.1 Schedulers for Complex Requests
	2.2.2 Schedulers for Simple Requests for Continuous Media
	2.2.3 Schedulers with Unsolved Contention Problems
	2.2.4 Schedulers for Requests for Discrete Data
	2.2.5 Scheduling of a Single Medium

	2.3 Scheduling of Automated Storage/Retrieval Systems
	2.4 Scheduling in Logistics Applications
	2.5 Summary

	3 Hierarchical Multimedia Archive
	3.1 Usage Scenarios
	3.2 User Request
	3.3 System Architecture
	3.4 Cache Manager
	3.5 Generic Schedule Builder
	3.6 Storing New Data in a Jukebox
	3.7 Summary

	4 Tertiary-Storage Hardware
	4.1 Jukebox Technology
	4.1.1 Optical and Magneto-optical Disks
	4.1.2 Magnetic Tapes

	4.2 Hardware Model
	4.2.1 Disk Model
	4.2.2 Drive Model
	4.2.3 Jukebox and Robot Model
	4.2.4 Model Validation

	4.3 Jukebox Controller
	4.4 Summary

	5 Formalization of the Scheduling Problem
	5.1 Model Hierarchy
	5.2 Fixed Switching Model
	5.2.1 Problem Formalization
	5.2.2 Job Parameters
	5.2.3 Complexity Analysis
	5.2.4 Medium Schedule
	5.2.5 Model Extension for Partially Blocking Loads and Unloads

	5.3 Minimum Switching Model
	5.3.1 Example

	5.4 Lau’s Switch-Read Model
	5.4.1 Job parameters
	5.4.2 Extended Switch-Read Model

	5.5 Imperative Switching Model
	5.6 Periodic Quantum Model
	5.7 Dedicated Robots Model
	5.7.1 Problem Formalization
	5.7.2 Example

	5.8 Optimal Model
	5.9 Summary

	6 Promote-IT
	6.1 Scheduling Algorithm
	6.2 Scheduling Strategies
	6.3 Drive and Robot Schedules
	6.4 Model Extension
	6.5 Resource Assignment
	6.5.1 Branch-and-Bound Algorithm
	6.5.2 Job Incorporation

	6.6 Medium Schedule
	6.7 Complexity Analysis
	6.8 Dispatcher
	6.9 Implementation Notes
	6.10 Comparison of the Strategies
	6.11 Summary

	7 Alternative Schedulers
	7.1 Jukebox Early Quantum Scheduler
	7.1.1 Scheduler
	7.1.2 Dispatcher
	7.1.3 Example

	7.2 Optimal Scheduler
	7.3 Extensions to Existing Jukebox Schedulers
	7.3.1 Extended Aggressive Strategy
	7.3.2 Extended Conservative Strategy
	7.3.3 Fully-Staged-Before-Starting

	7.4 Summary

	8 Implementation and Simulation Environment
	8.1 JukeTools
	8.2 Time Simulation
	8.3 Interface to Hardware
	8.4 Output Control and Analysis
	8.5 Framework for Pluggable Jukebox Scheduler
	8.6 Workload and Content Generation
	8.6.1 Jukebox-Contents Generator
	8.6.2 Request Generator
	8.6.3 Cache-Contents Generator
	8.6.4 Arrival-Times Generator

	8.7 Summary

	9 Performance Evaluation
	9.1 Aperiodic vs. Periodic Scheduling
	9.2 Pipelining vs. Full Staging
	9.3 Early vs. Conservative Dispatching
	9.3.1 Back-to-Front Strategies
	9.3.2 JEQS and Front-to-Back Strategies

	9.4 Decoupled vs. Coupled Load and Unload
	9.5 Heuristic vs. Optimal Scheduling
	9.6 Summary

	10 Conclusions
	10.1 Directions for Future Research

	Bibliography
	Titles in the IPA Dissertation Series
	Biography

